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Stereo vision, resulting in the knowledge of deep information in a scene, is of great
importance in the field of machine vision, robotics and image analysis. In this article, an
explicit analysis of the existing stereo matching methods, up to date, is presented. The pre-
sented algorithms are discussed in terms of speed, accuracy, coverage, time consumption,
and disparity range. Towards the direction of real-time operation, the development of stereo
matching algorithms, suitable for efficient hardware implementation is highly desirable.
Implementations of stereo matching algorithms in hardware for real-time applications are
also discussed in details.

1. INTRODUCTION

Stereo vision is a flourishing field, attracting the attention of many researchers
(Forsyth and Ponce 2002; Hartley and Zisserman 2004). New approaches are
presented every year. Such an expanding volume of work makes it difficult for those
interested to keep up with it. An up-to-date survey of the stereo vision matching
algorithms would be useful for those already engaged to the field, giving them a brief
overview of the advances accomplished, as well as for the newly interested ones,
allowing for a quick introduction to the state-of-the-art.

Since the excellent taxonomy presented by Scharstein and Szeliski (2002) and
the interesting work of Sunyoto, Mark and Gavrila (2004) many new stereo
matching, i.e., stereo correspondence, methods have been proposed (Yoon and
Kweon 2006a; Klaus et al. 2006). Latest trends in the field mainly pursue real-time
execution speeds, as well as decent accuracy. As indicated by this survey, the algo-
rithms’ theoretical matching cores are quite well established leading the researchers
towards innovations resulting in more efficient hardware implementations.

Detecting conjugate pairs in stereo images is a challenging research problem
known as the correspondence problem, i.e., to find for each point in the left image,
the corresponding point in the right one (Barnard and Thompson 1980). To deter-
mine these two points from a conjugate pair, it is necessary to measure the similarity
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NOMENCLATURE
SAD  Sum of absolute differences E Energy function
SSD  Sum of squared differences I; Image intensity (i = /, r for the left and
NCC  Normalized cross-correlation the right image, respectively)
D Disparity

of the points. The point to be matched without any ambiguity should be distinctly
different from its surrounding pixels. Several algorithms have been proposed in
order to address this problem. However, every algorithm makes use of a matching
cost function so as to establish correspondence between two pixels. The most com-
mon ones are absolute intensity differences (AD), the squared intensity differences
(SD) and the normalized cross correlation (NCC). Evaluation of wvarious
matching costs can be found in (Scharstein and Szeliski 2002; Mayoral et al. 2004;
Hirschmuller and Scharstein 2007). Usually, the matching costs are aggregated over
support regions. Those support regions, often referred to as support or aggregating
windows, could be square or rectangular, fix-sized or adaptive ones. The aggregation
of the aforementioned cost functions, leads to the core of most of the stereo vision
methods, which can be mathematically expressed as follows, for the case of the sum
of absolute differences (SAD)

SAD(X,y,d)Z Z |Il(x,y)—1,,(x,y—d)| (1)
x,yeWw

for the case of the sum of squared differences (SSD)
SSD(x,y,d) = Y (I(x,y) = L(x.y = d))’ )

xyew

and for the case of the NCC

b e ) by - d)
Ve B0r3) - S 12,y — d)

where [;, I, are the intensity values in left and right image, (x, y) are the pixel’s
coordinates, d is the disparity value under consideration and W is the aggregated
support region. Despite of sophisticated aggregation being traditionally considered
as time-consuming, Gong and his colleagues (2007) study the performance of various
aggregation approaches suitable for real-time methods.

The selection of the appropriate disparity value for each pixel is performed
afterwards. The simpler algorithms make use of winner-takes-all (WTA) method
of disparity selection

NCC(x,y, 3)

D(x,y) = argmin SAD(x, y,d) (4)

i.e., for every pixel (x, y) and for constant value of disparity d the minimum cost is
selected. Equation 4 refers to the SAD method but any other could be used instead.
However, in many cases disparity selection is an iterative process, since each pixel’s
disparity is depending on its neighboring pixels’ disparity. As a result, more than one
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iterations are needed in order to find the best set of disparities. This stage differentiates
the local from the global algorithms, which will be analyzed later in this section. An
additional disparity refinement step is frequently used. The general structure of the
majority of stereo correspondence algorithms (Scharstein and Szeliski 2002) is shown
in Figure 1.

Stereo correspondence algorithms can be grouped into those producing sparse
output and those giving a dense result. Feature based methods stem from human
vision studies and are based on matching segments or edges between two images,
thus resulting in a sparse output. This disadvantage, dreadful for many purposes,
is counterbalanced by the accuracy and speed obtained. However, contemporary
applications demand more and more dense output. This is the reason why this work
is mainly focused on stereo correspondence algorithms that produce dense output. In
order to categorize and evaluate them a context has been proposed (Scharstein and
Szeliski 2002). According to this, dense matching algorithms are classified in local
and global ones. Local methods (area-based) trade accuracy for speed. They are also
referred to as window-based methods because disparity computation at a given point
depends only on intensity values within a finite support window. Global methods
(energy-based) on the other hand are time consuming but very accurate. Their goal
is to minimize a global cost function, which combines data and smoothness terms,
taking into account the whole image. Of course, there are many other methods
(Liu et al. 2006) that are not strictly included in either of these two broad classes.
The issue of stereo matching has recruited a variation of computation tools.
Advanced computational intelligence techniques are not uncommon and present
interesting and promiscuous results (Binaghi et al. 2004; Kotoulas et al. 2005).

While the aforementioned categorization involves stereo matching algorithms
in general, in practice it is valuable for software implemented algorithms only.
Software implementations make use of general purpose personal computers (PC)
and usually result in considerably long running times. However, this is not an option
when the objective is the development of autonomous robotic platforms, simul-
taneous localization and mapping (SLAM) or virtual reality (VR) systems. Such
tasks require real-time, efficient performance and demand dedicated hardware and
consequently specially developed and optimized algorithms. Only a small subset of
the already proposed algorithms is suitable for hardware implementation. Hardware
implemented algorithms are characterized from their theoretical algorithm as well as
the implementation itself. There are two broad classes of hardware implementations:
the field-programmable gate arrays (FPGA) and the application-specific integrated
circuits (ASIC) based ones. Figure 2 depicts an ASIC chip («¢) and a FPGA develop-
ment board (b). Each one can execute stereo vision algorithms without the necessity
of a PC, saving volume, weight and consumed energy. However, the evolution of

| [

Matchin

Input 9 ispari

Im: es — | Cost ost g pr:trlty
9 Computation Aggregation gecuon

Result Disparity
Refinement Map

Figure 1. Generalized block diagram of a stereo correspondence algorithm.
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Figure 2. An ASIC chip (a) and a FPGA development board (b).

FPGA has made them an appealing choice due to the small prototyping times, their
flexibility and their good performance.

According to the structure of this paper, recent stereo matching algorithms
are presented in section 2. Algorithms resulting in both dense and sparse output
are discussed, focusing, however, on the first category. In particular, dense disparity
algorithms utilizing local, global or other kinds of methods are considered. Section 3
deals with hardware implementations which are able to achieve real-time perform-
ance. FPGA implementations that use SAD, DP or phase-based methods are
presented. ASIC implementations are also covered. Finally, the conclusions and
the outcomes from the previously deployed bibliographic survey are evaluated in
section 4. The taxonomy deployed in this paper, in accordance with the afore-
mentioned structure is schematically presented in Figure 3.

2. RECENT STEREO MATCHING ALGORITHMS

The issue of stereo correspondence is of great importance in the field of machine
vision (Jain et al. 1995), computer vision (Forsyth and Ponce 2002), virtual reality,
robot navigation (Metta, Gasteratos, and Sandini 2004), depth measurements
(Manzotti et al. 2001) and environment reconstruction as well as in many other aspects
of production, security, defense, exploration, and entertainment. Calculating the dis-
tance of various points or any other primitive in a scene relative to the position of a
camera is one of the important tasks of a computer vision system. The most common
method for extracting depth information from intensity images is by means of a pair of
synchronized camera-signals, acquired by a stereo rig. The point-by-point matching
between the two images from the stereo setup derives the depth images, or the so called
disparity maps, (Faugeras 1993). This matching can be done as a one dimensional
search if accurately rectified stereo pairs in which horizontal scan lines reside on the
same epipolar line are assumed, as shown in Figure 4. A point P; in one image plane
may have arisen from any of points in the line C; P;, and may appear in the alternate
image plane at any point on the so-called epipolar line £, (Jain et al. 1995). Thus, the
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[Stereo Vision Algorithms ]

_[ Software Implementations ]
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Figure 3. Categorization of stereo vision algorithms.

search is theoretically reduced within a scan line, since corresponding pair points reside
on the same epipolar line. The difference on the horizontal coordinates of these points
is the disparity. The disparity map consists of all disparity values of the image. Having
extracted the disparity map, problems such as 3D reconstruction, positioning, mobile
robot navigation, obstacle avoidance, etc., can be dealt with in a more efficient way
(Murray and Jennings 1997; Murray and Little 2000).

Contemporary research in stereo matching algorithms, in accordance with
the ideas of Maimone and Shafer (1996), is reigned by the test bench available

Left Image Plane

C,® RightImage Plane

Figure 4. Geometry of epipolar lines, where C; and C; are the left and right camera lens centers, respec-
tively. Point P; in one image plane may have arisen from any of points in the line C; P;, and may appear in
the alternate image plane at any point on the epipolar line E;.
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Figure 5. Left image of the stereo pair (left) and ground truth (right) for the Tsukuba (@), Sawtooth
(b), Map (c), Venus (d), Cones (¢) and Teddy (f) stereo pair.

at the site maintained by Scharstein and Szeliski (http://vision.middlebury.edu/
stereo/). As numerous methods have been proposed since then, this section
aspires to review the most recent ones, i.e., mainly those published during and
after 2004. Most of the results presented in the rest of this paper are based on
the image sets (Scharstein and Szeliski 2002; Scharstein and Szeliski 2003) and
test provided there. The most common image sets are presented in Figure 5.
Table 1 summarizes their size as well the number of disparity levels. Experimental
results based on these image sets are given, where available. The preferred metric
adopted by in this paper, in order to depict the quality of the resulting disparity
maps, is the percentage of pixels whose absolute disparity error is greater than 1
in the unoccluded areas of the image. This metric, considered the most represen-
tative of the result’s quality, was used so as to make comparison easier. Other
metrics, like error rate and root mean square error are also employed. The speed

Table 1. Characteristics of the most common image sets

Tsukuba Map Sawtooth Venus Cone Teddy

Size in pixels 384 x 288 284 x 216 434 x 380 434 % 383 450 x 375 450 x 375
Disparity levels 16 30 20 20 60 60
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with which the algorithms process input image pairs is expressed in frames per
second (fps). This metric has of course a lot to do with the used computational
platform and the kind of the implementation. Inevitably, speed results are not
directly comparable.

2.1. Dense Disparity Algorithms

Methods that produce dense disparity maps gain popularity as the computa-
tional power grows. Moreover, contemporary applications are benefited by, and
consequently demand dense depth information. Therefore, during the latest years
efforts towards this direction are being reported much more frequently than towards
the direction of sparse results.

Dense disparity stereo matching algorithms can be divided in two general
classes, according to the way they assign disparities to pixels. Firstly, there are
algorithms that decide the disparity of each pixel according to the information pro-
vided by its local, neighboring pixels. There are, however, other algorithms which
assign disparity values to each pixel depending on information derived from the
whole image. Consequently, the former ones are called local methods while the latter
ones global.

2.1.1. Local methods. Local methods are usually fast and can at the
same time produce descent results. Several new methods have been presented. In
Figure 6a Venn diagram presents the main characteristics of the below presented
local methods. Under the term color usage we have grouped the methods that take
advantage of the chromatic information of the image pair. Any algorithm can pro-
cess color images but not everyone can use it in a more beneficial way. Furthermore,
in Figure 6 NCC stands for the use of normalized cross correlation and SAD for the
use of sum of absolute differences as the matching cost function. As expected, the use
of SAD as matching cost is far more widespread than any other.

Muhlmann and his colleagues (2002) describe a method that uses the sum of
absolute differences (SAD) correlation measure for RGB color images. It achieves
high speed and reasonable quality. It makes use of the left to right consistency
and uniqueness constraints and applies a fast median filter to the results. It can

SAD Legend:

1. Kotoulas et. al. 2005
. Yoon and Kweon 2006a
. Yoon and Kweon 2006b
Color %@ Occlusion 4 Di Stefano et. al. 2004

2
3
4
5. Zach et. al. 2004
Usage v Handling 6. Ogale and Aloimonos 2005a
‘ ‘ 7
8
9
1

. Yoon et. al. 2005
. Muhlmann et. al. 2002
. Mordohai and Medioni 2006
0. Binaghi et. al. 2004
NCC

Figure 6. Diagrammatic representation of the local methods’ categorization.
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achieve 20 fps for 160 x 120 pixels image size, making this method suitable for real-
time applications. The PC platform is Linux (kernel 2.4.6) on a dual processor
800 MHz Pentium III system with 512 MB of RAM.

Another fast area-based stereo matching algorithm, which uses the SAD as
error function, is presented in (Di Stefano et al. 2004). Based on the uniqueness
constraint, it rejects previous matches as soon as better ones are detected. In contrast
to bidirectional matching algorithms this one performs only one matching phase,
having though similar results. The results obtained are tested for reliability and
sub-pixel refined. It produces dense disparity maps in real-time using an Intel
Pentium III processor running at 800 MHz. The algorithm achieves 39.59 fps speed
for 320 x 240 pixels and 16 disparity levels and the root mean square error for the
standard Tsukuba pair is 5.77%.

On the contrary, Ogale and Aloimonos (2005a) take into consideration
the shape of the objects depicted and demonstrate the importance of the vertical
and horizontal slanted surfaces. The authors propose the replacement of the
standard uniqueness constraint referred to pixels with a uniqueness constraint
referred to line segments along a scanline. So the method performs interval
matching instead of pixel matching. The slants of the surfaces are computed
along a scanline, a stretching factor is then obtained and the matching is
performed based on the absolute intensity difference. The object is to achieve
minimum segmentation. The experimental results indicate 1.77%, 0.61%,
3.00%, and 7.63% error percentages for the Tsukuba, Sawtooth, Venus and
Map stereo pairs, respectively. The execution speed of the algorithm varies from
1 to 0.2 fps on a 2.4 GHz processor.

Another method that presents almost real-time performance is reported in
(Yoon et al. 2005). It makes use of a refined implementation of the SAD method
and a left-right consistency check. The errors in the problematic regions are reduced
using different sized correlation windows. Finally, a median filter is used in order to
interpolate the results. The algorithm is able to process 7 fps for 320 x 240 pixels
images and 32 disparity levels. These results are obtained using an Intel Pentium 4
at 2.66 GHz Processor.

A window-based method for correspondence search is presented in (Yoon and
Kweon 2006a) that uses varying support-weights. The support-weights of the pixels
in a given support window are adjusted based on color similarity and geometric
proximity to reduce the image ambiguity. The difference between pixel colors is
measured in the CIELab color space because the distance of two points in this space
is analogous to the stimulus perceived by the human eye. The running time for the
Tsukuba image pair with a 35 x 35 pixels support window is about 0.016 fps on an
AMD 2700+ processor. The error ratio is 1.29%, 0.97%, 0.99%, and 1.13% for the
Tsukuba, Sawtooth, Venus and Map image sets, respectively. These figures can be
further improved through a left-right consistency check.

The same authors propose a pre-processing step for correspondence search in
the presence of specular highlights in (Yoon and Kweon 2006b). For given input
images, specular-free two-band images are generated. The similarity between pixels
of these input-image representations can be measured using various correspondence
search methods such as the simple SAD-based method, the adaptive support-weights
method (Yoon and Kweon 2006¢) and the dynamic programming (DP) method. This
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pre-processing step can be performed in real time and compensates satisfactory for
specular reflections.

Binaghi (Binaghi et al. 2004) on the other hand, have chosen to use the zero
mean normalized cross correlation (ZNCC) as matching cost. This method inte-
grates a neural network (NN) model, which uses the least-mean-square delta rule
for training. The NN decides on the proper window shape and size for each support
region. The results obtained are satisfactory but the 0.024 fps running speed reported
for the common image sets, on a Windows platform with a 300 MHz processor,
renders this method as not suitable for real-time applications.

Based on the same matching cost function a more complex area-based
method is proposed in (Mordohai and Medioni 2006). A perceptual organization
framework, considering both binocular and monocular cues is utilized. An initial
matching is performed by a combination of normalized cross correlation techni-
ques. The correct matches are selected for each pixel using tensor voting.
Matches are then grouped into smooth surfaces. Disparities for the unmatched
pixels are assigned so as to ensure smoothness in terms of both surface orien-
tation and color. The percentage of unoccluded pixels whose absolute disparity
error is greater than 1 is 3.79, 1.23, 9.76, and 4.38 for the Tsukuba, Venus,
Teddy and Cones image sets. The execution speed reported is about 0.002 fps
for the Tsukuba image pair with 20 disparity levels running on an Intel Pentium
4 processor at 2.8 MHz.

There are, of course, more hardware-oriented proposals as well. Many of
them take advantage of the contemporary powerful graphics machines to achieve
enhanced results in terms of processing time and data volume. A hierarchical dis-
parity estimation algorithm implemented on programmable 3D graphics processing
unit (GPU) is reported in (Zach et al. 2004). This method can process either rec-
tified or uncalibrated image pairs. Bidirectional matching is utilized in conjunction
with a locally aggregated sum of absolute intensity differences. This implemen-
tation, on an ATI Radeon 9700 Pro, can achieve up to 50 fps for 256 x 256 pixel
input images.

Moreover, the use of Cellular Automata (CA) is exploited in (Kotoulas,
Gasteratos et al. 2005). This work presents an architecture for real-time extrac-
tion of disparity maps. It is capable of processing 1Mpixels image pairs at more
than 40 fps. The core of the algorithm relies on matching pixels of each scan-line
using a one-dimensional window and the SAD matching cost as described in
(Kotoulas, Georgoulas et al. 2005). This method involves a pre-processing mean
filtering step and a post-processing CA based filtering one. CA are models of
physical systems, where space and time are discrete and interactions are local.
They can easily handle complicated boundary and initial conditions. In CA
analysis, physical processes and systems are described by a cell array and a local
rule, which defines the new state of a cell depending on the states of its neigh-
bors. All cells can work in parallel due to the fact that each cell can indepen-
dently update each own state. Therefore the proposed CA algorithm is
massively parallel and is an ideal candidate to be implemented in hardware
(Nalpantidis, Sirakoulis, and Gasteratos 2007).

The main features of the discussed local algorithms are summarized in
Table 2.
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Table 2. Characteristics of local algorithms

Speed Image Disparity Computational

Author Method Features (fps) size levels platform
Muhlmann et al. 2002 SAD Color usage 20 160 x 120 Intel Pentium
Occlusion handling 11T 800 MHz with
Left to right consistency 512 MB RAM
Uniqueness constraints
Di Stefano, Marchionni SAD Occlusion handling 39.59 320 x 240 16 Intel Pentium
and Mattoccia 2004 Uniqueness constraint 111 800 MHz
Ogale and SAD Occlusion handling 1 384x288 16 24GHz
Aloimonos 2005a Interval uniqueness constraint
Yoon et al. 2005 SAD Occlusion handling 7 320x240 32 Intel Pentium
Left-right consistency check 42.66 GHz
Variable windows
Yoon and Kweon 2006a SAD Color usage 0.016 384 x 288 16 ~ AMD 2700+
Varying support-weights
Yoon and Kweon 2006b SAD Color usage 0.016 384 x 288 16  AMD 2700+

Varying support weights
Specular reflection

compensation
Binaghi et al. 2004 ZNCC Varying windows based on 0.024 284 x216 30 300MHz
neural networks
Mordohai and NCC Color usage 0.002 384 x288 20  Intel Pentium
Medioni 2006 Occlusion handling 2.8 MHz
Tensor voting
Zach, Karner and SAD Occlusion handling 50 256 x 256 88 ATI Radeon
Bischof 2004 Implemented on GPU 9700 Pro
Bidirectional matching
Kotoulas et al. 2005 SAD Cellular automata 40 1000 x 1000

2.1.2. Global methods. Contrary to local methods, global ones produce very
accurate results. Their goal is to find the optimum disparity function d = d(x,y)
which minimizes a global cost function E, which combines data and smoothness
terms.

E(d) = Edata(d) + - Esmooth(d)- (5)

where E,,, takes into consideration the (x, y) pixel’s value throughout the image,
Eg000, provides the algorithm’s smoothening assumptions and A is a weight factor.

The main disadvantage of the global methods is that they are more time
consuming and computational demanding. The source of these characteristics is
the iterative refinement approaches that they employ. They can be roughly divided
in those performing a global energy minimization and those pursuing the minimum
for independent scanlines using DP.

In Figure 7 the main characteristics of the below discussed global algorithms
are presented. It is clear that the recently published works utilizes global optimiza-
tion preferably rather than DP. This observation is not a surprising one, taking
into consideration the fact that under the term global optimization there are
actually quite a few different methods. Additionally, DP tends to produce inferior,
thus less impressive, results. Therefore, applications that don’t have running speed
constraints, preferably utilize global optimization methods.
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Legend:
Global Optimization 1. Yang et. al. 2006a
2. Veksler 2006
3. Klaus et. al. 2006
4. Yoon and Kweon 2006¢
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Figure 7. Diagrammatic representation of the global methods’ categorization.

2.1.2.1. Global optimization. The algorithms that perform global optimiza-
tion take into consideration the whole image in order to determine the disparity
of every single pixel. An increasing portion of the global optimization methodologies
involves segmentation of the input images according to their colors.

The algorithm presented in (Bleyer and Gelautz 2004) uses color segmen-
tation. Each segment is described by a planar model and assigned to a layer using
a mean shift based clustering algorithm. A global cost function is used that takes
into account the summed up absolute differences, the discontinuities between seg-
ments and the occlusions. The assignment of segments to layers is iteratively
updated until the cost function improves no more. The experimental results indi-
cate that the percentage of unoccluded pixels whose absolute disparity error is
greater than 1 is 1.53, 0.16, and 0.22 for the Tsukuba, Venus and Sawtooth image
sets, respectively.

The stereo matching algorithm proposed in (Hong and Chen 2004) makes use
of color segmentation in conjunction with the graph cuts method. The reference
image is divided in non-overlapping segments using the mean shift color segmen-
tation algorithm. Thus, a set of planes in the disparity space is generated. The goal
of minimizing an energy function is faced in the segment rather than the pixel
domain. A disparity plane is fitted to each segment using the graph cuts method.
This algorithm presents good performance in the textureless and occluded regions
as well as at disparity discontinuities. The running speed reported is 0.33 fps for a
384 x 288 pixel image pair when tested on a 2.4 GHz Pentium 4 PC. The percentage
of bad matched pixels for the Tsukuba, Sawtooth, Venus, and Map image sets is
found to be 1.23, 0.30, 0.08, and 1.49, respectively.

The ultimate goal of the work described in (Zitnick et al. 2004) is to render
dynamic scenes with interactive viewpoint control produced by a few cameras. A
suitable color segmentation-based algorithm is developed and implemented on a
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programmable ATI 9800 PRO GPU. Disparities within segments must vary
smoothly, each image is treated equally, occlusions are modeled explicitly and
consistency between disparity maps is enforced resulting in higher quality depth
maps. The results for each pixel are refined in conjunction with the others.

Another method that uses the concept of image color segmentation is reported
in (Bleyer and Gelautz 2005). An initial disparity map is calculated using an adapting
window technique. The segments are combined in larger layers iteratively. The
assignment of segments to layers is optimized using a global cost function. The qual-
ity of the disparity map is measured by warping the reference image to the second
view and comparing it with the real image and calculating the color dissimilarity.
For the 384 x 288 pixel Tsukuba and the 434 x 383 pixel Venus test set, the
algorithm produces results at 0.05 fps rate. For the 450 x 375 pixel Teddy image pair,
the running speed decreased to 0.01 fps due to the increased scene complexity.
Running speeds refer to an Intel Pentium 4 2.0 GHz processor. The root mean
square error obtained is 0.73 for the Tsukuba, 0.31 for the Venus and 1.07 for the
Teddy image pair.

Moreover, Sun and his colleagues (2005) presented a method which treats the two
images of a stereo pair symmetrically within an energy minimization framework that can
also embody color segmentation as a soft constraint. This method enforces that the
occlusions in the reference image are consistent with the disparities found for the other
image. Belief propagation iteratively refines the results. Moreover, results for the version
of the algorithm that incorporates segmentation are better. The percentage of pixels with
disparity error larger than 1 is 0.97, 0.19, 0.16, and 0.16 for the Tsukuba, Sawtooth,
Venus and Map image sets, respectively. The running speed for the aforementioned data
sets is about 0.02 fps tested on a 2.8 GHz Pentium 4 processor.

Color segmentation is utilized in (Klaus et al. 2006) as well. The matching cost
used here is a self-adapting dissimilarity measure that takes into account the sum of
absolute intensity differences as well as a gradient based measure. Disparity planes
are extracted using an insensitive to outliers technique. Disparity plane labeling is
performed using belief propagation. Execution speed varies between 0.07 and 0.04
fps on a 2.21 GHz AMD Athlon 64 processor. The results indicate 1.13, 0.10,
4.22, and 2.48 percent of bad matched pixels in non-occluded areas for the Tsukuba,
Venus, Teddy and Cones image sets, respectively.

Finally, one more algorithm that utilizes energy minimization, color segmen-
tation, plane fitting and repeated application of hierarchical belief propagation is
presented in (Yang et al. 2006b). This algorithm takes into account a color-
weighted correlation measure. Discontinuities and occlusions are properly handled.
The percentage of pixels with disparity error larger than 1 is 0.88, 0.14, 3.55, and 2.90
for the Tsukuba, Venus, Teddy and Cones image sets, respectively.

In (Yoon and Kweon 2006c) two new symmetric cost functions for global
stereo methods are proposed. A symmetric data cost function for the likelihood,
as well as a symmetric discontinuity cost function for the prior in the MRF model
for stereo is presented. Both the reference image and the target image are taken into
account to improve performance without modeling half-occluded pixels explicitly
and without using color segmentation. The use of both of the two proposed
symmetric cost functions in conjunction with a belief propagation based stereo
method is evaluated. Experimental results for standard test bed images show that
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the performance of the belief propagation based stereo method is greatly improved
by the combined use of the proposed symmetric cost functions. The percentage of
pixels badly matched for the non-occluded areas was found 1.07, 0.69, 0.64, and
1.06 for the Tsukuba, Sawtooth, Venus and Map image sets, respectively.

The incorporation of Markov random fields (MRF) as a computational tool is
also a popular approach.

A method based on the Bayesian estimation theory with a prior MRF model
for the assigned disparities is described in (Gutierrez and Marroquin 2004). The
continuity, coherence and occlusion constraints as well as the adjacency principal
are taken into account. The optimal estimator is computed using a Gauss-Markov
random field model for the corresponding posterior marginals, which results in a
diffusion process in the probability space. The results are accurate but the algorithm
is not suitable for real-time applications, since it needs a few minutes to process a
256 x 255 stereo pair with up to 32 disparity levels, on an Intel Pentium III running
at 450 MHz.

On the other hand, Strecha and his colleagues (2006) treat every pixel of the
input images as generated either by a process, responsible for the pixels visible from
the reference camera and which obey to the constant brightness assumption, or by an
outlier process, responsible for the pixels that cannot be corresponded. Depth and
visibility are jointly modeled as a hidden MRF, and the spatial correlations of both
are explicitly accounted for by defining a suitable Gibbs prior distribution. An
expectation maximization (EM) algorithm keeps track of which points of the scene
are visible in which images, and accounts for visibility configurations. The percen-
tages of pixels with disparity error larger than 1 are 2.57, 1.72, 6.86, and 4.64 for
the Tsukuba, Venus, Teddy and Cones image sets, respectively.

Moreover, a stereo method specifically designed for image-based rendering is
described in (Zitnick and Kang 2007). This algorithm uses over-segmentation of
the input images and computes matching values over entire segments rather than
single pixels. Color-based segmentation preserves object boundaries. The depths of
the segments for each image are computed using loopy belief propagation within a
MRF framework. Occlusions are also considered. The percentage of bad matched
pixels in the unoccluded regions is 1.69, 0.50, 6.74, and 3.19 for the Tsukuba, Venus,
Teddy and Cones image sets, respectively. The aforementioned results refer to a
2.8 GHz PC platform.

In (Hirschmuller 2005) an algorithm based on a hierarchical calculation of a
mutual information based matching cost is proposed. Its goal is to minimize a
proper global energy function, not by iterative refinements but by aggregating
matching costs for each pixel from all directions. The final disparity map is sub-
pixel accurate and occlusions are detected. The processing speed for the Teddy
image set is 0.77 fps. The error in unoccluded regions is found less than 3% for
all the standard image sets. Calculations are made on an Intel Xeon processor
running at 2.8 GHz.

An enhanced version of the previous method is proposed by the same author in
(Hirschmuller 2006). Mutual information is once again used as cost function. The
extensions applied in it result in intensity consistent disparity selection for untextured
areas and discontinuity preserving interpolation for filling holes in the disparity
maps. It treats successfully complex shapes and uses planar models for untextured
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areas. Bidirectional consistency check, sub-pixel estimation as well as invalid-
disparities interpolation are performed. The experimental results indicate that the
percentages of bad matching pixels in unoccluded regions are 2.61, 0.25, 5.14, and
2.77 for the Tsukuba, Venus, Teddy and Cones image sets, respectively, with 64
disparity levels searched each time. However, the reported running speed on a
2.8 GHz PC is less than 1 fps.

The work done by Kim and Sohn (2005) introduces a two-stage algorithm
consisting of hierarchical dense disparity estimation and vector field regularization.
The dense disparity estimation is accomplished by a region dividing technique that
uses a Canny edge detector and a simple SAD function. The results are refined by
regularizing the vector fields by means of minimizing an energy function. The root
mean square error obtained from this method is 0.9278 and 0.9094 for the Tsukuba
and Sawtooth image pairs. The running speed is 0.15 fps and 0.105 fps respectively
on a Pentium 4 PC running Windows XP.

An uncommon measure is used in (Ogale and Aloimonos 2005b). This work
describes an algorithm which is focused on achieving contrast invariant stereo
matching. It relies on multiple spatial frequency channels for local matching. The
measure for this stage is the deviation of phase difference from zero. The global
solution is found by a fast non-iterative left right diffusion process. Occlusions are
found by enforcing the uniqueness constraint. The algorithm is able to handle
significant changes in contrast between the two images and can handle noise in
one of the frequency channels. The Matlab implementation of the algorithm is cap-
able of processing the Middlebury image pairs at 0.5 to 0.25 fps rate, on a 2 GHz
computer platform.

The method described in (Brockers et al. 2005) uses a cost relaxation approach.
A similarity measurement is obtained as a preliminary stage of the relaxation
process. Relaxation is an iterative process that minimizes a global cost function while
taking into account the continuity constraint and the neighbor-pixel expected
similarity. The support regions are 3D within the disparity space volume and have
Gaussian weights. The disparity is available at any time of the iteratively refinement
phase, having of course diminished accuracy for little iteration cycles. This feature
makes this method suitable for time-critical applications. The percentages of bad
matching pixels in unoccluded regions are found to be 4.76, 1.41, 8.18, and 3.91
for the Tsukuba, Venus, Teddy and Cones image sets, respectively.

Another algorithm that generates high quality results in real time is reported in
(Yang et al. 2006a) It is based on the minimization of a global energy function
comprising of a data and a smoothness term. The hierarchical belief propagation
iteratively optimizes the smoothness term but it achieves fast convergence by remov-
ing redundant computations involved. In order to accomplish real-time operation
authors take advantage of the parallelism of graphics hardware (GPU). Experi-
mental results indicate 16 fps processing speed for 320 x 240 pixel self-recorded
images with 16 disparity levels. The percentages of bad matching pixels in unoc-
cluded regions for the Tsukuba, Venus, Teddy and Cones image sets are found to
be 1.49, 0.77, 8.72, and 4.61. The computer used is a 3 GHz PC and the GPU is
an NVIDIA GeForce 7900 GTX graphics card with 512 M video memory.

The work of Veksler (2006) indicates that computational cost of the graph cuts
stereo correspondence technique can be efficiently decreased using the results of a
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simple local stereo algorithm to limit the disparity search range. The idea is to
analyze and exploit the failures of local correspondence algorithms. This method
can accelerate the processing by a factor of 2.8, compared to the sole use of graph
cuts, while the resulting energy is worse only by an average of 1.7%. These results
proceed from an analysis done on a large dataset of 32 stereo pairs using a Pentium
4 at 2.6 GHz PC. This is a considerable improvement in efficiency gained for a
small price in accuracy, and it moves the graph-cuts based algorithms closer to
real-time implementation. The running speeds are 0.77, 0.38, 0.16, 0.17, 0.53, and
1.04 fps for the Tsukuba, Venus, Teddy, Cones, Sawtooth and Map image sets,
respectively while the corresponding error percentages are found 2.22, 1.39, 12.8,
8.87, 1.18, and 0.51.

The main features of the discussed global algorithms that utilize global
optimization are summarized in Table 3.

2.1.2.2. Dynamic programming. Many researchers develop stereo correspon-
dence algorithms based on DP. This methodology is a fair trade-off between the
complexity of the computations needed and the quality of the results obtained. In
every aspect, DP stands between the local algorithms and the global optimization
ones. However, its computational complexity still renders it as a less preferable
option for hardware implementation.

The work of Torra and Criminisi (2004) presents a unified framework that
allows the fusion of any partial knowledge about disparities, such as matched fea-
tures and known surfaces within the scene. It combines the results from corner, edge
and dense stereo matching algorithms to impose constraints that act as guide points
to the standard DP method. The result is a fully automatic dense stereo system with
up to four times faster running speed and greater accuracy compared to results
obtained by the sole use of DP.

Moreover, a generalized ground control points (GGCPs) scheme is introduced
in (Kim et al. 2005). One or more disparity candidates for the true disparity of each
pixel are assigned by local matching using oriented spatial filters. Afterwards, a
two-pass DP technique that performs optimization both along and between the scan-
lines is performed. The result is the reduction of false matches as well as of the typical
inter-scanline inconsistency problem. The percentage of bad matched pixels in unoc-
cluded regions is 1.53, 0.61, 0.94, and 0.706 for the Tsukuba, Sawtooth, Venus and
Map image sets. The running speeds, tested on a Pentium 4 at 2.4 GHz PC, vary
from 0.23 fps for the Tsukuba set with 15 disparity levels down to 0.08 fps for the
Sawtooth set with 21 disparity levels.

Wang et al. (2006) present a stereo algorithm that combines high quality results
with real-time performance. DP is used in conjunction with an adaptive aggregation
step. The per-pixel matching costs are aggregated in the vertical direction only result-
ing in improved inter-scanline consistency and sharp object boundaries. This work
exploits the color and distance proximity based weight assignment for the pixels
inside a fixed support window as reported in (Yoon and Kweon 2006a). The real-
time performance is achieved due to the parallel use of the CPU and the GPU of
a computer. This implementation can process 320 x 240 pixel images with 16 dispar-
ity levels at 43.5 fps and 640 x 480 pixel images with 16 disparity levels at 9.9 fps. The
test system is a 3.0 GHz PC with an ATI Radeon XL1800 GPU.
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Table 4. Characteristics of global algorithms that use DP

Speed Image Disparity Computational

Author Method Features (fps) size levels platform
Torra and DP  Occlusion handling
Criminisi 2004 Prior feature matching
Kim et al. 2005 DP  Occlusion handling 0.23 384 x 288 16 Intel Pentium 4
Prior disparity candidate 2.4GHz
assignment

Two-pass inter-scanline
optimization

Wang et al. 2006 DP  Color usage 43.5 320 %240 16 3.0GHz
Interscanline consistency CPU -ATI Radeon
Adaptive aggregation XL1800 GPU
Parallel usage of CPU and GPU

Veksler 2005 DP  Applied to pixel-tree structure ~2

Lei et al. 2006 DP  Occlusion handling 0.1 384 %288 16 1.4 GHz
Color usage Intel Pentium M

Applied to region-tree
structure

On the contrary, the algorithm proposed in (Veksler 2005) applies the DP
method not across individual scanlines but to a tree structure. Thus the minimization
procedure accounts for all the pixels of the image, compensating the known streaking
effect without being an iterative one. Reported running speed is a couple of frames per
second for the tested image pairs. So, real-time implementations are feasible. How-
ever, the results obtained are comparable to those of the time-consuming global meth-
ods. The reported results of bad matched pixels percentages are 1.77, 1.44, 1.21, and
1.45 for the tested Tsukuba, Sawtooth, Venus and Map image sets, respectively.

In (Lei et al. 2006) the pixel-tree approach of the previous work is replaced by a
region-tree one. First of all, the image is color-segmented using the mean-shift algor-
ithm. During the stereo matching, a corresponding energy function defined on such a
region-tree structure is optimized using the DP technique. Occlusions are handled by
compensating for border occlusions and by applying cross checking. The obtained
results indicate that the percentage of the bad matched pixels in unoccluded regions
is 1.39, 0.22, 7.42, and 6.31 for the Tsukuba, Venus, Teddy and Cones image sets.
The running speed, on a 1.4 GHz Intel Pentium M processor, ranges from 0.1 fps
for the Tsukuba dataset with 16 disparity levels to 0.04 fps for the Cones dataset with
60 disparity levels.

The main features of the discussed global algorithms that utilize DP are
summarized in Table 4.

2.1.3. Other methods. There are of course other methods, producing
dense disparity maps, which can be placed in neither of previous categories. The
below discussed methods use either wavelet-based techniques or combinations of
various techniques.

Such a method, based on the continuous wavelet transform (CWT) is found in
(Huang and Dubois 2004). It makes use of the redundant information that results
from the CWT. Using 1D orthogonal and biorthogonal wavelets as well as 2D
orthogonal wavelet the maximum matching rate obtained is 88.22% for the Tsukuba
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Table 5. Characteristics of the algorithms that cannot be clearly assigned to any category

Author Method Features

Huang and Dubois 2004 Continuous wavelet 1D orthogonal and biorthogonal wavelets
transform 2D orthogonal wavelet

Liu et al. 2006 Wavelet-based Non-uniform rational B-splines curves

De Cubber et al. 2008 Intensity based Stereo-vision and structure-from-motion fusion

pair. Upsampling the pixels in the horizontal direction by a factor of two, through
zero insertion, further decreases the noise and the matching rate is increased to
84.91%

Another work (Liu et al. 2006) presents an algorithm based on non-uniform
rational B-splines (NURBS) curves. The curves replace the edges extracted with a
wavelet based method. The NURBS are projective invariant and so they reduce false
matches due to distortion and image noise. Stereo matching is then obtained by esti-
mating the similarity between projections of curves of an image and curves of
another image. A 96.5% matching rate for a self recorded image pair is reported
for this method.

Finally, a different way of confronting the stereo matching issue is proposed in
(De Cubber et al. 2008). The authors, comprehending that there is no all-satisfying
method, investigate the possibility of fusing the results from spatially differentiated
(stereo vision) scenery images with those from temporally differentiated (structure
from motion) ones. This method takes advantage of both method’s merits improving
the performance.

The main features of the discussed algorithms that cannot be clearly assigned
to any of the aforementioned categories are summarized in Table 5.

2.2. Sparse Disparity Algorithms

Algorithms resulting in sparse, or semi-dense, disparity maps tend to be less
attractive as most of the contemporary applications require dense disparity infor-
mation. Though, they are very useful when fast depth estimation is required and
at the same time detail, in the whole picture, is not so important. This type of algo-
rithms tends to focus on the main features of the images leaving occluded and poorly
textured areas unmatched. Consequently high processing speeds, accurate results but
with limited density are achieved. Very interesting ideas flourish in this direction but
since contemporary interest is directed towards dense disparity maps, only a few
indicatory algorithms are discussed here.

Veksler (2002) presents an algorithm that detects and matches dense features
between the left and right images of a stereo pair, producing a semi-dense disparity
map. A dense feature is a connected set of pixels in the left image and a correspond-
ing set of pixels in the right image such that the intensity edges on the boundary of
these sets are stronger than their matching error. All these are computed during the
stereo matching process. The algorithm computes 1 fps with 14 disparity levels for
the Tsukuba pair producing 66% density and 0.06% average error in the non
occluded regions.



REVIEW OF STEREO VISION ALGORITHMS: FROM SOFTWARE TO HARDWARE 453

Another method developed by Veksler (2003) is based on the same basic
concepts as the former one. The main difference is that this one uses the graph cuts
algorithm for the dense feature extraction. As a consequence this algorithm produces
semi-dense results with significant accuracy in areas where features are detected. The
results are significantly better considering density and error percentage but require
longer running times. For the Tsukuba pair it achieves a density up to 75%, the total
error in the non occluded regions is 0.36% and the running speed is 0.17 fps. For the
Sawtooth pair the corresponding results are 87%, 0.54% and 0.08 fps. All the results
are obtained from a Pentium III PC running at 600 MHz.

On the other hand, Gong and Yang (2005a) in their paper propose a DP algor-
ithm, called reliability-based dynamic programming (RDP) that uses a different mea-
sure to evaluate the reliabilities of matches. According to this the reliability of a
proposed match is the cost difference between the globally best disparity assignment
that includes the match and the one that does not include it. The interscanline con-
sistency problem, common to the DP algorithms, is reduced through a reliability
thresholding process. The result is a semi-dense unambiguous disparity map with
76% density, 0.32% error rate and 16 fps for the Tsukuba and 72% density,
0.23% error rate and 7 fps for the Sawtooth image pair. Accordingly, the results
for Venus and Map pairs are 73%, 0.18%, 6.4 fps and 86%, 0.7%, 12.8 fps. As it
can be seen the reported execution speeds, tested on a 2 GHz Pentium 4 PC, are
encouraging for real-time operation if a semi-dense disparity map is acceptable.

A similar to the previous one near-real-time stereo matching technique is pre-
sented in (Gong and Yang 2005b) by the same authors, which is also based on the
RDP algorithm. This algorithm can generate semi-dense disparity maps. Two
orthogonal RDP passes are used to search for reliable disparities along both hori-
zontal and vertical scanlines. Hence, the interscanline consistency is explicitly
enforced. It takes advantage of the computational power of programmable graphics
hardware, which further improves speed. The algorithm is tested on an Intel Pentium
4 computer running at 3 GHz with a programmable ATI Radeon 9800 XT GPU
equipped with 256 MB video memory. It results in 85% dense disparity map with
0.3% error rate at 23.8 fps for the Tsukuba pair, 93% density, 0.24% error rate
at 12.3 fps for the Sawtooth pair, 86% density, 0.21% error rate at 9.2 fps for the
Venus pair and 88% density, 0.05% error rate at 20.8 fps for the Map image pair.
If needed, the method can also be used to generate more dense disparity maps
deteriorating the execution speed.

The main features of the discussed algorithms that produce sparse output are
summarized in Table 6.

Table 6. Characteristics of the algorithms that produce sparse output

Speed Image Disparity Computational
Author Method  Density (fps) size levels platform
Veksler 2002 Local 66 1 384 x 288 14 Intel Pentium I11 600 MHz
Veksler 2003 Graph cuts 75 0.17 384 x 288 16 Intel Pentium 4 2 GHz
Gong and Yang 2005a RDP 76 16 384 x 288 16 Intel Pentium 4 3 GHz CPU

Gong and Yang 2005b RDP 85 23.8 384 x 288 16 ATI Radeon 9800 XT GPU
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3. REAL-TIME HARDWARE IMPLEMENTATIONS

There are many applications, as mentioned above, that demand extraction of
the disparity map from image pairs in real-time. Moreover, most of these applica-
tions demand dense output. PCs due to their serial-processing architecture find it
difficult to meet these requirements. This problem can be efficiently confronted by
the use of dedicated hardware. In addition, the need for dedicated hardware is more
evident in the case of autonomous units, where the existence of a PC is not a
convenient solution. Hardware implementations can accelerate the performance of
the stereo vision systems. They are able to provide the parallelism that is commonly
useful in image processing and vision algorithms. In particular, regular and simple
structures such as CA or basic filtering modules can be easily and efficiently
implemented in hardware. By processing several parts of the data in parallel and
performing specific calculations, their overall performance is considerably better
compared to software solutions running on serial general purpose processors.

The hardware implementation of global algorithms is neither an appealing nor
an easy option. As stated above, global methods are time and computational
demanding because of their iterative nature. This is also the reason that prevents
them from being implemented with parallel structures. On the contrary, global
algorithms require odd, rather than simple and straightforward, implementations.
DP though is inherently the simplest of all the other global approximations.

In contrast, local methods could be greatly benefited by the use of such parallel
and straightforward structures. Parallelism and simplicity are key factors, available
in dedicated hardware implementations, that can reduce the required running times.
There are several works that describe local methods implemented on hardware.
What most of them have in common is that they implement a rather simple algori-
thm and make extensively use of computation concurrency. Performance is refined
by custom choices during the hardware architecture development phase. A general-
ized block diagram of a hardware implementable stereo correspondence algorithm is
shown in Figure 8.

Hardware implementation involves using either FPGA or ASIC. DSP based
solutions have also been reported in the past (Faugeras et al. 1993), however they
are not reported as frequently, due to their inhibited difficulty in parallel processing.
A survey of the recent bibliography confirms that FPGA implementations are
preferable. That is because the time required for fabrication and test of ASIC imple-
mentations is considerably long and its cost is high. Moreover there is almost no
flexibility for future improvements and modifications. On the other hand FPGA
provide rapid prototyping time, are far less expensive and can be easily adapted to
new specifications. In this way FPGA combine the best parts of hardware solutions
with those of the software ones.

Input __| Ma::?s't"g g Ma:::':t"g \  Disparity : Disparity
Images — Computation | Aggregation Selection Map

Figure 8. Generalized block diagram of a hardware implementable stereo correspondence algorithm.
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3.1. FPGA Implementations

All the hardware implementations examined in this paper can achieve real-time
operation. However, the use of FPGAs is now the most convenient and reasonable
choice for hardware development. They are cheap and perform remarkably well.
The available resources of the devices are constantly growing, allowing for more
complex algorithms to be implemented. The variety of available electronic design
automation (EDA) tools and the absence of fabrication stage make the prototyping
times very short. Another advantage is that the resulting hardware implementation is
open for further upgrades. Thus, FPGA implementations are very flexible and fault
tolerant.

In the rest of this subsection FPGA implemented methods based on SAD, DP
and Local Weighted Phase-Correlation (LWPC) are presented. Table 7 demonstrates
the main characteristics of the below discussed works. This table is populated
according to the available data. It is evident that the simplest and most straightfor-
ward method of all, i.e., SAD, is the most preferable one.

3.1.1. FPGA implementations based on SAD. As expected, when it comes
to hardware implementations SAD-based methods are the most preferred ones. SAD
calculation requires simple computational modules, as it involves only summations
and absolute values’ calculations.

The FPGA based architecture presented in (Arias-Estrada and Xicotencatl
2001) is able to produce dense disparity maps in real time. The architecture imple-
ments a local algorithm based on the SAD aggregated in fixed windows. Input data
are processed in parallel on a single chip. An extension to the basic architecture is

Table 7. FPGA implementations’ characteristics

Matching Image  Disparity Window  Speed

Author cost Aggregation size levels size (fps) Device

Arias-Estrada and SAD fixed window 320 x 240 16 7x7 71 Xilinx Virtex

Xicotencatl 2001 XCV800HQ240-6

Jia et al. 2003 SAD fixed window 640 x 480 64 9%x9 30

Miyajima and SAD fixed window 640 x 480 200 7x7 20 Xilinx Virtex-II

Maruyama 2003

Chonghun et al. 2004 SAD adaptive 1024 x 1024 32 16 x 16 (max) 47 Xilinx Virtex-II 6000

window

Yi et al. 2004 SAD fixed window 270 x 270 27 9x9 30 Xilinx Virtex-11
XC2V8000

Lee et al. 2005 SAD fixed window 640 x 480 64 32x32 30 Xilinx Virtex-II
XC2V8000

Hariyama et al. 2005a SAD adaptive window 64 x 64 64 8 x 8 (max) 30 Altera APEX20KE

Georgoulas et al. SAD adaptive window 640 x 480 80 7x7 (max) 275 Altera Stratix IT

in press EP2S180F1020C3

Jeong and Park 2004 DP single line 1280 x 1000 208 15 Xilinx Virtex-II
XC2V8000

Park and Jeong 2007 DP 2 lines 320 x 240 128 30 Xilinx Virtex-IT

pro-100

Darabiha et al. 2006 LWPC 256 x 360 20 30 4x Xilinx
Virtex2000E

Masrani and LWPC 480 x 640 128 30 4x Altera

MacLean 2006 Stratix S80
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also proposed in order to compute disparity maps on more than 2 images. This
method can process 320 x 240 pixel images with 16 disparity levels at speeds higher
than 71 fps. The devise utilization is 4.2 K slices equivalent to 69 K gates.

The system developed by Jia et al. (2003) is able to compute dense disparity
maps in real time using the SAD method over fixed windows. The whole algorithm,
including radial distortion correction, Laplacian of Gaussian (LoG) filtering, corres-
pondence finding, and disparity map computation is implemented in a single FPGA.
The system can process 640 x 480 pixel images with 64 disparity levels and 8 bit
depth precision at 30 fps speed, and 320 x 240 pixel images at 50 fps.

The SAD algorithm aggregated over fixed windows is the option utilized in
(Miyajima and Maruyama 2003) as well. This stereo vision system is implemented
on a single FPGA with plenty of external memory. It supports camera calibration
and left-right consistency check. The performance is 20 fps for 640 x 480 pixel
images and 80 fps for 320 x 240. The number of disparity levels for these results
are 200 and the device utilization is 54%. Changing the number of disparity levels
results only in changing the circuit size and not the performance.

One more simplified version of the adaptive windows aggregation method in
conjunction with SAD is used in (Chonghun et al. 2004). It can process images of
size up to 1024 x 1024 pixels with 32 disparity levels at 47 fps speed. The resources
needed are 3.4 K slices i.e., 10% of the utilized FPGA area.

Another simple implementation of the SAD method with fixed windows is
proposed in (Yi et al. 2004). The effect of various window shapes is investigated.
The results indicate that 270 x 270 pixel images with 27 disparity levels can be
processed at 30 fps speed achieving 90% of correct matches. The utilization of the
FPGA reported is in any case less than 46 K slices equivalent to 8 M gates.

The same core algorithm as in (Yi et al. 2004) is used in the work reported
in (Lee et al. 2005). The aggregating window shape is found to play a significant role
in this implementation. Using rectangular windows instead of square ones reduces
the resource usage to 50% i.e., less than 10K slices and at the same time, preserves
the same output quality. The proposed system can process 640 x 480 pixel images
with 64 disparity levels at 30 fps rate and 320 x 240 pixel images with 64 disparity
levels at 115 fps.

On the other hand, a slightly more complex implementation than the previous
ones is proposed in (Hariyama et al. 2005a). It is based on the SAD using adaptive
sized windows. The proposed method iteratively refines the matching results by
hierarchically reducing the window size. The results obtained by the proposed
method are 10% better than that of the fixed-window method. The architecture is
fully parallel and as a result all the pixels and all the windows are processed simul-
taneously. The speed for 64 x 64 pixel images with § bit grayscale precision and 64
disparity levels is 30 fps. The resources consumption is 42.5K logic elements,
1.e., 82% of the utilized device.

Finally, SAD aggregated using adaptive windows is the core of the work
presented in (Georgoulas et al. in press). A hardware based CA parallel-pipelined
design is realized on a single FPGA device. The achieved speed is nearly 275 fps, for
640 x 480 pixel image pairs with a disparity range of 80 pixels. The presented
hardware-based algorithm provides very good processing speed at the expense of
accuracy. The device’s utilization is 149 K gates, that is 83% of the available resources.
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3.1.2. FPGA implementations based on DP. The use of DP is an alterna-
tive as well. The implementation presented in (Jeong and Park 2004) uses the DP
search method on a trellis solution space. It copes with the vergence cameras
case, i.e., cameras with optical axes that intersect. The images received from a pair
of cameras are rectified using linear interpolation and then the disparity is calcu-
lated. The architecture has the form of a linear systolic array using simple processing
elements. The design is canonical and simple to be implemented in parallel. The
implementation requires 208 processing elements. The resulting system can process
1280 x 1000 pixel images with up to 208 disparity levels at 15 fps.

An extension of the previous method is presented in (Park and Jeong 2007).
The main difference is that data from the previous line are incorporated so as to
enforce better inter-scanline inconsistency. The running speed is 30 fps for
320 x 240 pixel images with 128 disparity levels. The number of utilized processing
elements is 128. The percentage of pixels with disparity error larger than 1 in the
unoccluded areas is 2.63, 0.91, 3.44, and 1.88 for the Tsukuba, Map, Venus and
Sawtooth image sets, respectively.

3.1.3. FPGA implementations based on phase-based methods. Moreover
phase-based techniques can be implemented on hardware as well. The algorithm
implemented in (Darabiha et al. 2006) is called Local Weighted Phase-Correlation
(LWPC). Hardware implementation of the algorithm turns out to be more than
300 times faster than the software one. The platform used is the Transmogrifier-3A
(TM-3A) containing four (4) Xilinx Virtex2000E FPGAs connected via a 98 bit
bus. A description of the programmable hardware platform, the base stereo vision
algorithm and the design of the hardware can be found in the paper. 66.6 K
look-up tables (LUT) and 83K flip-flops (FF) are required. This implementation
can produce dense disparity maps of 256 x 360 pixel image pairs with 20 disparity
levels and 8 bit sub-pixel accuracy at the rate of 30 fps.

The same LWPC method is used in (Masrani and MacLean 2006). The platform
used is the Transmogrifer-4 containing four (4) Altera Stratix S80 FPGAs. The system
performs rectification and left-right consistency check to improve the accuracy of the
results. The speed for 640 x 480 pixel images with 128 disparity levels is 30 fps. The
hardware resources demanded are roughly the same as in (Darabiha et al. 2006) due
to the reuse of the available temporal information of the input video sequence.

3.2. ASIC Implementations

On the other hand ASIC implementation is an option as well, but it is more
expensive, except of the case of massive production. The prototyping times are con-
siderable longer and the result is highly process-dependent. Any further changes are
difficult and additionally time and money consuming. Their performance supremacy
does in most cases not justify choosing ASICs. These are the main reasons that make
recent ASIC implementation publications rare in contrast to the FPGA-based ones.

Published works concerning ASIC implementations (Hariyama et al. 2000;
Hariyama et al. 2005b) of stereo matching algorithms are restricted to the use of
SAD. The reported architectures make extensive use of parallelism and seem
promising. Though, they lack undisputed experimental results.
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4. CONCLUSIONS

The stereo correspondence problem remains an active area for research. More
and more modern applications demand not only accuracy but real-time operation as
well. Getting to know the state-of-the-art or even keeping up with it is a time
consuming task. This work examines the latest breakthroughs in the area of stereo
vision. Software as well as hardware implementations have been considered and
presented. In every case a categorization was attempted according to their major
attributes. In order to help the reader among the numerous works presented, graphic
diagrams as well as summarizing tables are utilized.

It seems that both area and energy based methods walk towards this objective
with satisfactory results. There are many new remarkable methods. Attributes such
as color-information usage and occlusion handling are common place for many of
those methods. The majority, though, of these algorithms are software implemented
and not suitable for real-time operation.

Hardware VLSI implementation of these algorithms could be a radical solution
towards higher running speeds. That is because hardware implementations can easily
embody parallel processing structures, in contrast to the serial-processing PCs. How-
ever, it is not only the sequential data processing available at general purpose PCs
that is to blame. PCs are generally heavy, occupy considerable volume and consume
much energy. An algorithm to be hardware implementable has to be a simple enough
and not an iterative one. But when it comes for hardware implementation there are
two options, ASICs and FPGAs. The advantages and disadvantages of each one
have been explained. The use of FPGAs facilitates the development and is preferred
by most of the active researchers. Many algorithms especially developed for and
implemented in FPGAs are presented.
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