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CONSTRUCTION OF A 3D DEPTH MAP
FROM BINOCULAR STEREO

The goal of 3D machine vision system is to analyze visual data acquired from the environement (scene) and
carry out its geometrical measurement or derive an interpretation, to execute given task. Construction a 3D
depth map of the scene is a first and main subtask in each task executed by the 3D machine vision system.

This paper presents some results (obtained in recent years), concerning the construction of the depth map,
based on an image stereopair registered by a binocular camera system.

Key words: binocular stereo, feature extraction, stereo matching, 3D depth map.

1 Introduction

Typical task of 3D machine vision system concerns the navigation of autonomus vehicles, the
inspection of manufactured parts, the analysis of microscopic images, etc. The goal of the
system in these applications is to measue and describe or identify and locate a specified object
in the scene (i.e. to determine its exact location and orientations). If the system should
identify or recognize an object, it must have full knowledge about its shape. Such a priori
knowledge about the object is provided with the aid of a model of this object, which contains
the geometrical data of the object and, may be, some other data, e.g. photometric, thermal.
A vision system which uses objects models is refered as a model-based, recognition vision
system (fig. 1). In the other case the system, which ónly”describes the scene in terms of image
primitives, is referred to as a mapping vision system.

A high quality recognition system should be able to locate objects when:
- objects have arbitrary shapes and forms,
- objects are viewed from any direction,
- objects are partially ocluded by other objects.
To design such system one must solve many problems:
(1) the method of data acqusition,
(2) the method of construction of the object models,
(3) the means of description the acquired data and the model,
(4) the method of matching the data descriptions and the objects descriptions. Their general
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classification it can find in [21]. In this paper I consider only vision systems based on the stereo
image pair acquired from binocular stereo system of cameras.

There are two main approaches to the construction of objects models (for model-based -
recognition system):
In the first approache the actual objects are used to generate a model, i.e. data obtained from
many viewpoints are collected into a coherent form to provide information about the object
from all the viewing points.
In the second approache a CAD system is used with the set of graphic primitives which allows
the user to construct interactively the models of the objects (most recent research efforts use
CAD-like systems). The representation scheme for the acquired data and the model object
- is a key issue in the 3D computer vision, since the 2D arrays of numbers from the cameras are
not convenient to use in their żaw”form. Must be used to describe the data and the models.
In order to describe the data and the models, the representation scheme has to be:
- unambiguous, (i.e. no two objects have the same representation),
- unique, i.e. there is a single description exist for each object using the representation scheme,
- robust, i.e. with respect to missing data points, e.g. as in the case of partial occlusions,
- convenient to use in the matching and storing.

The matching of the appropriate descriptions of the data as well as the models is usually
performed in two steps:
1. A correspondence is estabilished between the two sets of descriptions usually between the

partial description of the object and the full model description; the correct match estab-
ilishes an interpretation of an input data,

2. On the base of the estabilished correspondences, geometrical transformations, usually in the
form of rotation matrix and the translation vector are derived to give the possibility of the
transformation of the data base model into the orientation of the object in the scene.

2 Acquisition of visual data

From many existing methods of data collection about a scene, I will consider acquisition of the
stereo pair of images with the aid of passive, binocular stereo system of cameras, and stereo
analysis. Two cameras form the stereo system if they are such oriented, that their view areas
have common part. The stereo analysis relates to that common view area.

The foundation of stereo analysis presumes that the scene objects contain certain struc-
tures, transformed into stereo image features like edges, common areas, unique shapes. In the
stereo analysis these features are extracted (from both stereo images), and the images are mu-
tually matched and it a śtereo disparity”is calculated. The stereo disparity is the difference
(< xl, yl > − < xr, yr >) between the coordinate projections of a scene point P(X,Y,Z) on the
image planes: Ol (left) and Or (right) of the stereo pair.Stereo analysis consists of the following stages, [4]:
1. stereo pair acquisition; stereo images can be collected in many ways; however if the

analysis must be exact, the differences in the images of the stereo pair should result only
from different positions of the cameras in the camera system (and not from, e.g. differences
in parameters or differences in an acquisition time in the both cameras),

2. camera modeling; dependences among X,Y,Z (the coordinates of some scene point), kno-
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Fig.1. A general scheme of mapping and recognition in the model-based stereo vision system.

wing coordinates x,y (the projection of those point on the image plane), geometry and optics
of the camera system are estabilished,

3. feature extraction and image segmentation; feature-based and area-based processing
is carried out to find distinctive matching primitives,

4. stereo matching - finding of the distinctive points and structures in the scene; for both
views of the scene; a correspondence must be estabilished between those point that are
visible in both images,

5. disparity and depth maps construction; the distance between the matched points co-
ordinates on both images (disparity map), and between matched points on the images and
the suitable points in the scene (depth map) are to be calculated,

6. interpolation; it is often necessary to interpolate values for those regions, for which no
disparity can be found.

2.1 Base dependences in lateral stereo camera system

In the stereo camera system there is so called epipolar geometry. This geometry includes,
among others, [8], the terms: ↪epipolar plane ↪and ↪epipolar lines”.
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The epipolar plane contains certain point P(X,Y,Z) of the scene and its projections <
xl, yl > and < xr, yr > on the camera image planes Ol and Or. The epipolar plane cuts the
camera image planes along lines called the epipolar lines.

From above it follows the ↪epipolar geometry constraint”:
evry point on the epipolar line on the left/right image has the corresponding point
on the appropriate epipolar line on the right/left image, fig.2. The above epipolar
geometry constraint plays , in stereo analysis, very important role. In the stage of stereo
matching this dependence allows to reduce the searching for the corresponding points on the
coupled image from entire image plane to the appropriate epipolar line; this is important
reduction of stereo matching complexity.

Although the positions and the orientations of the cameras (in the stereo camera system)
can be arbitrary, nevertheless (for operating possibility of the stereo system), the common (for
the both cameras) view area should be the largest. It means that the yl and yr axes of the
stereo image coordinate systems should be parallel and the zl and zr axes should be converged
(at least, to be parallel). If the cameras are oriented in such a way that the yl and yr axes are
parallel, we say that cameras are in correspondence. If the cameras are in correspondence,
the epipolar lines are parallel to picture scanning lines and only horizontal disparity can be on
the stereo images (i.e., yl = yr = y and < xl, yl > − < xr, yr >=< xl − xr, 0 >).

2.1.1 Stereo cameras system with parallel axes

When the axes of the cameras systems coordinates are parallel, fig. 3, the following formulas
are true:

xl =
f(X + b/2)

Z
, xr =

f(X − b/2)

Z
, yl = yr =

fY

Z
. (2.1)

Defining the stereo disparity as:

d
∆
= xl − xr, (2.2)

the backprojection equations have the form:

X =
b(xl + xr)

2d
, Y =

byl

d
, Z =

bf

d
. (2.3)

We can use the above formulas to calculate the scene point coordinates (if we know the image
coordinates xl, xr and y(= yl = yr) of the corresponding points on the stereo images, obtained
by the stereo matching process).

Constraints along epipolar lines
In the stereo camera system with the parallel axes, the view area of the both cameras does not
cover each other, fig. 4. The xr coordinate of the Pr point (right image), reaches a minimum,
when P (X, Y, Z) scene point reaches the SBr line (the right border of the common view area).
In the same situation the xl coordinate of the PL point (left image) reaches minimum. These
minimal values we can calculate with the aid of the following formulas:

xrmin =
b− h

2
+ fb/lc, xlmin = −b+ h

2
, (2.4a)

where lc is an assumpted maximum of the depth of the scene exploration.
The xr and xl coordinates of the Pl and Pr points, adequately, reach the maximum, when

the P (X, Y, Z) scene point reaches the SBl line - the left border of the common view area.
These maximal values we can calculate with the aid of the following formulas:

xrmax =
b+ h

2
, xlmax = −b− h

2
− bf/lc. (2.4b)
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Also, the inequality below is evident:

xr > b+ xl. (2.5)

The above formulas estabilish additional constraints on the images coordinates of the corre-
sponding points along every epipolar lines. The constraint on the Z coordinate value (the
minimum of the scene depth), is:

Zmin = f + ls, (2.6a)

where f is the focus lenght of the camera and ls can be calculated from the formulas below:

ls = (b/2)ctgσ. (2.6b)

2.1.2 Stereo camera system with converged axes

The strategy and correctness of the consecutive stages of the stereo analysis, particulary the
matching process, and especially operating possibility of the stereo system need (in many tasks)
the view areas of both cameras cover entirely each other. It can reach it if the cameras axes
become converged, fig. 5. How large should the angle of the camera convergence be? It depends
on answers on some other questions:.
(1) how large should the maximum depth of the scene exploration be?
(2) How large can the precision of the data acquisition be?

Let us assume that the resolution coefficient w[mm/r.u.], is the line size of the (square) area
of the scene, represented by the one (square) pixel of the image. Then we can calculate an a -
the line size of the (square) view area of the camera in the following way:

a = rw, (2.7)

where r – the line size of the image (in r.u. - a raster unit). We assume, the areas views of the
both cameras cover each other. Now, having estabilished (for many other reasons), the lenght
of the stereo base b, we can calculate the angle of the convergence of the cameras, using the
below formulae:

θ = (1/2) arcsin
4bfh

rw(4f 2 + h2)
. (2.8)

For the stereo camera system with the axes converged on 2θ, we can calculate the X, Y and Z
coordinates of the P (Z, Y, Z) scene point, in the followinf way:

=
b(f cos θ − xl sin θ)(f cos θ + xr sin θ)

fd cos 2θ + (f 2 + xlxr) sin 2θ
. X =

bf(xl + xr)

2(f 2 + xlxr) sin 2θ
Y =

byl

d
. (2.9)

The lc value follows from the converge angle value (and the technological parameters of the
cameras), and can be calculated as follows:

lc =
b(cos 2σ + cos 2θ)

2 sin 2θ
. (2.10)

The second constraint on the calculating Z coordinate value (the scene depth - the vertex of
the view cone), Zmin = f + ls, can be calculated in the following way:

ls = (b/2)ctg(σ + θ) = (b/2)
2f − htgθ

h+ 2ftgθ
. (2.11)

The parameters dealing with the image acquisition are influencing the quality of the results
of feature extraction (regarding to the image contrast and the signal-noise-ratio) as well as the
quantity of the extracted features (regarding to the number of sensor elements of the camera
and regarding to the sampling frequency used for the analogue image signal).
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3 Image segmentation and stereo matching

It is not suitable to evaluate a selected single processing step in stereo vision, e.g. a stereo
matching algorithm, without taking into consideration the interdependence of all processing
steps. The whole stereo vision cycle has to be examined and has to be assessed. However, at
the heart of a binocular stereo approach lies the task of stereo matching. Stereo matching has
a great influence on the quality of the computed results. In addition, the entire correlation
and the mutual dependence of the processing steps within a stereo system should be taken into
consideration.

3.1 Feature- and area-based segmentation

The most commonly used features are points along the edges of intensity discontinuities.
These points, which are termed edgels for edge elements, are useful because they represent the
points at which high-confidence, anambiguous matches may most likely be made. However, the
feature-based methods provides only sparse matches and require interpolation as well as some
methods for modeling occlusion. Large local change in disparity in the feature-based process
may confuse it.

Area-based methods have been applied, where the surfaces varies smoothly and continuously.
They offer the adventage of directly generated the dense disparity map but are sensitive to noise
and breakdown when there is a lack of texture or when depth discontinuities occur.

Some preconditions for the feature extraction method are already fixed by selecting a special
technique for stereo matching (matching of: pixels, line segments, regions, etc.).

3.2 Constrains and rules for stereo matchig

The base for solving the correspondence problem is similarity. In general for a particular
image feature in one image, there will be many candidate matches in the corresponding image.
Matching rules derived from the constraints underlying the physical environment and imagining
are used to restrict this pool of candidate matches.

The common constraints incorporated in stereo processing, are the following, [6, 16]:
1. surface continuity constraint: it assumes that the physical world is composed of surfaces

being almost continuous everywhere; this suggests that disparities ought to vary smoothly;
2. surface uniqueness constraint: this relates to the fact that the imaged surfaces, for the

most part, are opaque, and there is assumed that the image element acquired by a camera
corresponds to a unique point lying physically on the surface of an object. Thus correspon
dence should be unique;

3. general position constraint: this relates to the observation that certain events occur
quite infrequently, in a statistical sense, to rule out false correspondences.

They where identified by two categories of stereo matching rules, [6, 16]:
I. spatial-domains rules: the rules are based on the surface continuity and the general posi-

tion assumptions of the matching environment; examples are the following:
* area statistics: matching primitives collected over an image measurement patch are com-

pared across images to obtain a single similarity measure; as an example can be correlation
of image feature; this rule usually implies a strong continuity assumption, because it imposes
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approximately constant disparity over the patch;
* contour statistics: in this the comparison is restricted along a contour; the assumpion of

physical surface continuity is made weaker by assumimg disparity to be smooth along con-
tours but allowing them to change abruptly across contours; figural continuity is an example
of this type.

II. gradient limit rules: the rules are based on the manner in which images are manifested;
examples are the following:

* ordering constraints: impose the restriction that along epipolar lines the matched primiti-
ves must occur in the same order; this is equivalent to the assumpion that imaged surfaces
are not transparent and are continuous;

* disparity gradient limits: restrict the maximum disparity gradient allowed between ma-
ched primitives; there has suggested that for most natural scene surfaces the disparity
gradient between correct maches is usually less than one;

* coarse-to-fine analysis: disparity information obtained at a coarser scale is used to
limit the search domain for the matching of finer scale primitives; this is used with scale
specific matching primitives.

3.3 Feature-based stereo matching

The feature-based approaches match more abstract features rather than matching texture re-
gions in the two images, since such features are less sensitive to noise. Feature-based analysis
provides more precise positioning (for the feature) in the individual images, and it can attain
correspondingly higher accuracy for its correspondences in 3D.

Below there are following feature-based matching methods used the most frequently:
1. A method using a local disparity limit, [17]. Line segments, which are defined by the zero

crossings of the Laplacian of the smoothed image, are matched with regard to their differen-
ces in orientation when their centers of gravity lie inside a specific search area. The se-
arch area is defined by using local disparity limits computed by applying the block matching
technique.
Constraints: epipolar geometry, uniqueness and local disparity limit.

2. Marr, Poggio and Grimson multi-resolution approach, [2, 5]. The algorithm is based on
inve-

stigations about the human visual system. Candidates are matched with regard to the mini-
mum difference between the directions of the zero- crossings in the Laplacians of the smo-
othed images in different scales.
Constraints: epipolar geometry, uniqueness, compatibility and disparity continuity.

3. A statistical method as suggested by Kass, [10] . A vector of 12 ”uncorrelated”functionals
is defined by the first and second partial derivatives of the smoothed intensity function with
three different standard deviations. Pixels are matched if the differences between all vector
components are smaller than the respective user defined thresholds.
Constraints: epipolar geometry and uniqueness.

4. A method using disparity continuity as suggested by Kim and Bovik, [13]. Extreme points
detected in a contour (that are high curvature edge points terminations and junctions)
are matched in a first processing step. Afterwards the remaining contour points are matched
with regard to the smallest value of the disparity gradient. The contours are defined by the
zero crossings in the direction of the local gradient of the smoothed intensity function.
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Constraints: epipolar geometry, uniqueness, disparity continuity and disparity gradient.
5. A method using disparity histograms, suggested by Shirai and Nishimoto, [9]. Candidates
are matched with regard to global and local disparity histograms. The distribution of possi-
ble disparity values in a local neighbourhood of a matching candidate is computed as di-
sparity histogram in different scales and different window sizes. The best scale is selected
with regard to the most significant peak in the disparity histogram. The disparity with the
greatest likelihood is computed and compared regarding its compatibility with neighboured
candidates.
Constraints: epipolar geometry, uniqueness, compatibility and disparity continuity.

6. A method using dynamic programming as suggested by Ohta and Kanade, [8]. Connected
edges are matched by finding the shortest paths in 2-D and 3-D search areas. The problem
of finding a matching path on a 2-D search plane, whose axes are the right and left scanlines,
is called intra-scanline search. The search in a 3-D search space, which is a stack of the 2-D
search planes, is used to utilize the consistency constraints across the 2-D search planes.
This search is called inter-scanline search.
Constraints: epipolar geometry, uniqueness and ordering constraint.

3.4 Area-based stereo matching

The area-based matching is more accurate than those using edge-based primitives since re-
gions have higher discriminations capability. Also, area-based approaches are more efficient
since there are fewer features to be matched. However, while the use of regions make stereo
matching more accurate, reliable, and efficient than edge-based matching, region-based match-
ing processes typically yield coarse disparity maps. The most frequantly mentioned matching
methods are:
1. Shirai stereo matching method, [12]. The local minima of a similarity function based on the

square differences between the intensity values in search windows of different sizes, are de-
termined. Pixels are matched starting from the smallest window and using three thre sholds.
Constraints: epipolar geometry and uniqueness.

2. Block matching for stereo, [17]. The similarity between the intensity distributions in two
equal sized blocks (n×m matrices) in the left and the right image is measured by using the
mean square error MSE between the intensity values of the pixels inside the respective
blocks. The left image is segmented into a constant number of equal sized blocks and the
search for a corresponding block in the right image is only carried out for these segmented
blocks. The same disparity value is assumed for all pixels of one block when applying the
block matching technique.
Constraints: epipolar geometry and uniqueness.

4 Depth map interpolation and depth discontinuities lo-

cation

Deterministic approaches
In both feature- and area-based correspondence methods, the interpolation is usually included
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into the normal processing. In addition to interpolating, there are used the smoothing sur-
faces and isolating depth discontiuities. Terzopoulos, [14], attempt to locate discontinuities by
locating significant inflection points on the resultant surface. Blake and Zisserman, [11], in-
troduced their graduated nonconvexity algorithms, which allow the direct search for depth
discontinuities and orientation discontinuities, respectively.

Saint-Marc et al., [18], present a method to smooth the surface while preserving disconti-
nuities, which facilitates the detection of discontinuities.

Any one of these interpolation methods may be used to extract the discontinuities in the
manner that we suggest by adding a strong preference for the existance of the discontinuity
contour (either depth or orientation) to occur at edgels or along the edges.

3D (control) points for the interpolation of the visible surfaces can be computed exclusively
for the matched features in both images.

Hoff and Ahuja, [15], attempt to combine the feature matching, contour detection, and sur-
face interpolation into one process. Their results are very impresive, but they fail when their
matching features (zero crossings) are too sparse; in addition, they can not accurately locate
the surface discontinuities.

Stochastic approaches
Geman and Geman, [7], use Gibbs distributations to model the spatial correlations between
neighboring regions within images along with the use of an additional cost constraint (the  line
process”) that represents the presence or absence of a surface discontinuity.

Stochastic approaches are, however, computationally expensive in a typical implementation
and contain nonrobust parameters that need specyfic tuning to each scene. Deterministic
approaches are more adventage and robust with respect to their internal parameters.

5 Combined stereo vision processing

Marr and Poggio, [2], proposed a computational model of human stereo vision, which may be
the base to machine vision system bulding.

In this model zero crossings in the Laplacian of the Gaussian of the intensity, are used in
stereo matching. They suggest, that three constraints should be satisfied in choosing global
correspondence: compatibility, uniqueness, and continuity. Grimson, [3], implemented an im-
proved version of this model and obtained good results when there is a sufficiently dense set
of features. However, zero crrosings, usually, are relatively sparse and irreguraly distributed
in images, so there is produced a sparse depth map. Such methods must be augmented by an
interpolation step.

The generation of accurate and finer resolution disparity maps (and subsequently depth
measurements) can be better accomplished using edge-based techniques. Both regions and edges
play important, but somewhat complementary role in a binocular stereo process. The new stereo
vision system is investigated which, unlike most stereo approaches, integrates ↪area-based ↪and
”feature based”primitives (fig. 6, see also [19]). These area-based processing provides a dense
disparity map, and the feature-based processing provides an accurate location of discontinuities.
In this way it is possible to generate a disparity map that is sufficiently accurate to allow to
detect depth and surface orientation discontinuities, provided that the resolution is fine enough.
Area-based cross correlation along with an ordering constraint and a weak surface smoothness
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assumption allow to produce an initial disparity map. However, a match is accepted only if
both views agree on a correlation peak and if this peak is strong enough. This disparity map
is only a blurred version of the true one because of the smoothing introduced by the cross
correlation.

At depth discontinuities the problem can be reduced by introducing the edge information:
the disparity map is smoothed (subject to the constraint that the disparity at edgels is fixed)
and the unsupported points removed. This metod gives an active role to edgels parallel to the
epipolar lines.

Description of the method
First, the original images are adjusted so that their corresponding epipolar line lie along
corresponding rasters.
Next, the resulting images are reduced by a convolution with a Gaussian and subsampled by
a factor of two to form a pyramid of three image pairs, each of which is separately processed
starting with the coarsest pair.

The initial feature- and area-based processes proceed independently to produce a set of edge
features and a dense disparity estimate. These are then combined to produce a dense disparity
estimate with less blurring.

At each level of the image pyramid this estimate is used to improve the matching in the
next finer level, and the last set of results are used the surface features: specially labeling
all of the points as being visible or not, providing a confidence for the generated values, and
marking the depth discontinuity contours. Further processing may then be performed to
smooth the discrete surface , interpolate through unknown areas, and extract the orientation
discontiuuities. This system operates in several passes over the data.
First, a set of well-scattered, reliable matches are obtained by locating interest points based
on variance and edge strength and then utilizing an unconstrained hierarhical match algorithm.
Next, a camera calibration is performed , and epipolar-constrained hierarhical matching algo-
rithm is used to match the interest points. Those points that are evaluated to have the
most reliable matches are used as anchors for a final matching of all of the interest points. The
results and experience reached that way can be integrated into a solution with regard to the
selected requirements. The methods will be selected concerning their methodical distinction in
solving the correspondence problem (area based and feature based, etc.). These stereo methods
have been evaluated with regard to their suitability for the generation of a precise geometry
description of 3-D objects.

6 Conclusion

Many research activities dealing with stereo vision are known. Nevertheless, there still does
not exist a standardized way for the evaluation of the algorithms. Usually many questions
occur concerning the evaluation of published solutions to a problem. The known methods
differ in their solution to the segmentation method or correspondence problem as well as in the
selection of constraints assumed for the visible objects. Furthermore, nearly all publications
usually present their own solution in the task domain rather different, without comparing
it to the results of other methods (e.g. measurement, robot vision, photogrammetry, stereo
microscopy, etc.). The large number of distinguishable features in the solutions aggravates a
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direct comparison of the methods and it is nearly impossible to evaluate the suitability of a
method for a selected application.

The aim of this research is to take advantage of the ideas and the results of the published
methods. An exact reimplementation is not possible anyway for different reasons, e.g. computer
architectures, programming languages, details etc.

The realization of this framework is motivated by the idea of applying some selected al-
gorithms to the combining stereo vision process, giving the possibility to build autonomously
acting mapping stereo vision system. The combination of a framework with a testbed for im-
age acquisition allows for a systematic comparison between different methods. Therefore, the
suitability of a method regarding to a selected application can be assessed directly.

The considerations mentioned above encourage the necessity to create an experimental tool
for the methodical investigation of computer vision methods. Another difficulty occurring
with the evaluation of stereo methods is resulting from the direct interdependence between the
single processing steps. Furthermore, the processing steps are influenced by the selection of the
constraints on the objects in the scene. The accuracy of the results representing the geometry
of an a priori unknown 3-D object is the one of the main criterions in the evaluation.

References

1973
[1] Mori K., Kidole M., Asada H.:An iterative prediction and correction method for automatic stereo compari-

sion. CGIP, 2, 393–401
1979

[2] Marr H.P., Poggio T.: A computational theory of human stereo vision. Proc. Roy. Soc. Lond., B204, 301–328
1981

[3] Grimson W.E.I.: From Images to Surfaces: A Computational Study of the Human Early Visual Sys-
tem.Cambridge, MA:MIT Press
1982

[4] Barnard S.T., Fischler M.A.: Computational stereo. ACM Computing Survays, 14(4), 553–572
1983

[5] Grimson E.: An implementation of the computational theory of visual surface interpolation. CVGIP, 22,
39–69

[6] Nishihara H.K., Poggio T.: Stereo vision for robotics. First Int. Symp. Robotic Res., IEEE Press, 489–505
1984

[7] German S., German D.: Stochastic relaxation, Gobbs distribution, and the Bayesian restoration of images.
IEEE trans. PAMI, 6(6),721–741
1985

[8] Ohta Y., Kanade T.: Stereo by intra and inter-scanline search using dynaming programming. IEEE Trans.
PAMI, 7(2), 139–154

[9] Shirai Y., Nishimoto T.: A stereo method using disparity histograms of multi-resolution channels. 3rd Int.
Symp. on Robotics Research, Gouivieux, France, 27–32
1986

[10] Kass M.: Computing visual correspondence. In: From pixels to predicates: recent advances in computational
and robotic vision. Pentland A. (Ed.), Ablex Publ., Norwood, New Jersey, USA, 78–92
1987

[11] Blake A., Zisserman A.: Visual Reconstruction. Cambridge, MA: MIT Press
[12] Shirai Y.: Three-dimensional computer vision. Springer, Berlin

1988
[13] Kim N.H., Bovik A.: A contour-based stereo matching algorithm using disparity continuity. PR, 21(5),

505–514

11



[14] Terzopoulos D.: The computation of visible-surface computation. IEEE Trans. PAMI, 10(4),417–438
1989

[15] Hoff W., Ahuja N.: Surface from stereo: integrating feature matching, disparity estimation, and contour
detection. IEEE Trans. PAMI, 11(2), 121–136

[16] Marapane S.B, Trivedi M.M.: Region-based stereo analysis for robotic applications. IEEE Trans. SMC,
19(6), 1447–1464
1991

[17] Koschan A.: Stereo matching using a new local disparity limit. In: Computer Analysis of Images and
Patterns. Proc. 4th Int. CAIP’91 Conference, Dresden, Germany, 1–26

[18] Saint-Marc P., Chen J.S., Medioni G.: Adaptive smoothing: a general tool for early vision. IEEE trans.
PAMI, 13(6), 514–529
1992

[19] Cochran S.D.,Medioni G.: 3-D surface description from binocular stereo. IEEE Trans. PAMI, 14(10), 981-
994

[20] Mokrzycki W.: Stereo vision systems. A review of problems. Machine GRAPHICS & VISION, 1(1/2),
342-392
1993

[21] Mokrzycki W.: Stereometry of 3D scene. Proc. II Symposium TPO’93, Serock, 18-20 Nov. 1993 (in Polish)

12



��

��

��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

��

��
P

′

P

P
′′

epipolar
plane

Ol
left image

Or
right image

Fr
right focus

Fl
left focus

f

b

right camera
axisepipolar

lines

stereo base line

�
���

H
HHHHj

•

•
•

•

•

•

•

•

•

Fig.2. Epipolar geometry of stereo camera system

PP
PP

PP
PP

PP
PP

PP
PP PPPPP

PP
PP

P

��
��

��

•

•
xl

yl zl

Pl

Ol

left image

left focus

PPPPP

PP
PP

P��
��

��

•

•
xr

yr
zr

Pr

right image

Or

right focus

• P

�
�
�
�

���
���

�

�
�

�
�
�
�

�����������������•

•

left camera
coordinates system

global
coordinates

system

• X

Z
Y

right camera
coordinates system

PPPq

6

���1 PPPPPq

6

��
��

��1

PPPPPq

6

��
��

��1

PPPq

6
���1 PPPPPq

6

��
��

��1

PPPPPq

6

��
��

��1

Fig.3. Coordinates systems: global (of the scene) and of the cameras images

13



����������������������S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SS

��

��

��

��

��

��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

@@

@@

@@

@@

@@

@@

@@

@@

@@

L
L
L

L
L
L

L
L
L

L
L
L

L
L
L

L
L
L

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�

S
S
S
S
S
S
S
S
S
S
S
S
S
SS

S
S

S
S

S
S

-�

6

?

6

?

� - � -

�- -�

6

?-

6 6
Zl Zr

Bl Br B
′

rB
′

l

common view
area

P

lc

ls

f
X

S

b FrFl

h h

PrPlOl Ordl dr

••

•

•

• •

• •

• •

Fig.4. Areas of cameras views

14



�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

D
D
D
D
D
D

D
D
D
D
D
D

D
D
D
D
D
D

D
D
D
D
D
D

D
D
D
D
D
D

```
`̀

   
  

```
`̀

   
  

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SS

��

��

��

��

��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

@@

@@

@@

@@

@@

@@

@@

@@

@@

6

?

6

?

Bl Br

lc

ls

f

S

b
Fr

Fl

a

Pb

•

h

m

•• -�

•

• •

-�

2Θ




�


� 90− σ −Θ

HHjHHY2Θ

J
ĴJ
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Fig.6. A combined stereo processing flow diagram
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