
A Study of Fast, Robust Stereo-Matching

Algorithms

by

Wenxian Hong

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

SEP 0 1 2010

LIBRARIES

S.B. Mechanical Engineering
Massachusetts Institute of Technology (2009)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

Author
Department of Mechanical Engineering

May 21, 2010

Certified by
Douglas P. Hart

Professor of Mechanical Engineering
Thesis Supervisor

Accepted by
David E. Hardt

Chairman, Department Committee on Graduate Students

2

A Study of Fast, Robust Stereo-Matching Algorithms

by

Wenxian Hong

Submitted to the Department of Mechanical Engineering
on May 21, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Stereo matching is an actively researched topic in computer vision. The goal is to
recover quantitative depth information from a set of input images, based on the vi-
sual disparity between corresponding points. This thesis investigates several fast and
robust techniques for the task. First, multiple stereo pairs with different baselines
may be meaningfully combined to improve the accuracy of depth estimates. In multi-
baseline stereo, individual pairwise similarity measures are aggregated into a single
evaluation function. We propose the novel product-of-error-correlation function as an
effective example of this aggregate function. By imposing a common variable, inverse
distance, across all stereo pairs, the correct values are reinforced while false matches
are eliminated. Next, in a two-view stereo context, the depth estimates may also be
made more robust by accounting for foreshortening effects. We propose an algorithm
that allows a matching window to locally deform according to the surface orientation
of the imaged point. The algorithm then performs correlation in multiple dimensions
to simultaneously determine the most probable depth and tilt. The 2D surface ori-
entation search may be made more efficient and robust by separating into two 1D
searches along the epipolar lines of two stereo pairs. Moreover, by organizing the
multi-dimensional correlation to avoid redundant pixel comparisons or using numer-
ical minimization methods, greater efficiency may be achieved. Finally, we propose
an iterative, randomized algorithm which can significantly speed up the matching
process. The key insights behind the algorithm are that random guesses for corre-
spondences can often produce some good disparity matches, and that these matches
may then be propagated to nearby pixels assuming that disparity maps are piecewise
smooth. Such a randomized algorithm converges within a small number of iterations
and accurately recovers disparity values with relative computational efficiency. All
three techniques developed are described analytically and evaluated empirically using
synthetic or real image datasets to demonstrate their superior performance.

Thesis Supervisor: Douglas P. Hart
Title: Professor of Mechanical Engineering

4

Acknowledgments

I would like to thank my advisor, Prof. Douglas Hart, for his support throughout my

research. His brilliant ideas have led me to dream big, and without his kind under-

standing, I would not have been able to finish this work. Coming from a mechanical

engineering background, I am also indebted to Profs. Berthold Horn, Ramesh Raskar

and Bill Freeman for showing me the ropes in computer vision and computational

photography. Thanks also to Federico Frigerio, Tom Milnes and Danny Hernandez-

Stewart for many helpful discussions. Lastly, I am grateful to Leslie Regan and the

ME Graduate Office for always extending a helping hand.

On a personal note, I would like to thank my friends, especially those in the

Sport Taekwondo team, the Singapore Students Society and my fellow classmates,

for making these past four years a true pleasure amidst the occasional pain. And

thanks to my parents for their constant encouragement and love.

-----6

Contents

1 Introduction 19

2 Basics of Stereo Matching 23

2.1 Epipolar Geometry . 23

2.2 Finding Correspondences . 26

2.3 Similarity Measures . 27

2.4 Local Methods 31

2.5 Global Methods . 33

2.6 Sum m ary . 34

3 Multiple-Baseline Stereo 35

3.1 Introduction . 35

3.2 Theoretical Analysis . 37

3.3 Implementation 40

3.3.1 Correlation-based Similarity Measures 40

3.3.2 Product of EC-in-inverse-distance (PEC) 43

3.3.3 Description of Algorithm . 45

3.4 R esults . 47

3.4.1 Synthetic Images . 47

3.4.2 Real Images . 48

3.4.3 Performance Comparison . 49

3.5 D iscussion . 50

7

4 Multi-Dimensional Correlation

4.1 Introduction

4.2 Related Work

4.3 Local Image Deformation

4.3.1 Cameras In Generic Positions .

4.3.2 Standard Geometry

4.3.3 Multiple Views

4.4 Evaluation

4.5 Basic Multi-Dimensional Correlation .

4.6 Efficient Multi-Dimensional Correlation

4.7 Numerical Minimization

5 Randomized Stereo Matching

5.1 Introduction

5.2 Related Work

5.3 Overview of Algorithm

5.3.1 Initialization

5.3.2 Iteration

5.3.3 Termination

5.4 Theoretical Analysis

5.4.1 Random Initialization

5.4.2 Convergence

5.4.3 Computational Complexity . .

5.5 Results

5.5.1 Synthetic Random Dot Images

5.5.2 Real Images

5.5.3 Processing Time

5.6 Discussion

5.6.1 Strengths and Limitations . . .

5.6.2 Extensions

. 7 1

73

. 73

. 74

. 77

. 77

. 79

. 84

. 84

. 84

. 85

. 86

. 88

. 88

. 93

. 99

. 10 1

. 10 1

. 105

6 Conclusions 111

6.1 Stereo Matching Basics . 111

6.2 Multiple-Baseline Stereo . 112

6.3 Multi-Dimensional Correlation . 112

6.4 Randomized Stereo Matching . 114

10

List of Figures

1-1 Alpha 2000 analytical stereo plotter (Source: Wikipedia) 20

1-2 Modern stereo techniques can reconstruct a dense 3D model (right)

from a set of images (left and middle). [28] 20

2-1 Epipolar geometry of binocular stereo systems [28]. A pixel in the left

image is constrained to lie along the corresponding epipolar line in the

right im age. 24

3-1 SSD as functions of normalized inverse distance for various baselines:

(a) B = b, (b) B = 2b, (c) B = 3b, (d) B = 4b, (e) B = 5b, (f) B = 6b,

(g) B = 7b, (h) B = 8b. The horizontal axis is normalized such that

8bF = 1. [12] . 41

3-2 Effect of combining multiple baseline stereo pairs. Every time more

stereo pairs are introduced by successively halving the baselines, the

minima of the SSSD-in-inverse-distance function become fewer and

sharper. When all the images are used, there is a clear minimum

at the correct inverse depth. [12] . 42

3-3 Individual correlation tables for each stereo pair in the synthetic image

dataset. The true matching peak is not discernable in any of the tables

alone. 44

3-4 Corrected PEC table using element-by-element multiplication of the

individual correlation tables in Fig.3-3. The true matching peak is

easily resolved and measured. 44

3-5 (a) Central view of synthetic image of ramp function. (b) Grouth

truth disparity map. (c) Disparity map obtained using the PEC-based

multi-baseline stereo method with a 5-by-5 pixel window. 48

3-6 (a) Central reference view of carton dataset. The orange rectangle

outlines the region of interest for correlation. (b) 3D surface recon-

struction of carton. Holes and inaccuracies arise for regions with low

texture, while disparity estimates along the right and left edges are

noisy due to occlusion. 49

3-7 Plot of percentage of correct disparities against the width of the sup-

port window, for the multi-baseline method (blue) and conventional

binocular stereo (red) applied to the synthetic image dataset. The

multi-baseline method is robust against different sizes of support win-

dow due to the elimination of spurious matches through cost function

aggregation. 50

4-1 (a) Generic camera geometry within the epipolar plane. PP' is a short

segment along the intersection of the epipolar plane with the object

surface. (b) Standard rectified geometry. 58

4-2 Left and right images of a simulated convex corner with flat sides. The

object has a depth range of 80-100 a.u. and the sides are flat planes

with a constant tilt of p = +2 in the x- direction. 62

4-3 Left and right images of a simulated convex parabolic surface. The

object has a depth range of 90-100 a.u. and is only tilted in the x-

direction . 62

4-4 Typical MDC tables obtained using window sizes of 5 x 5, 15 x 15 and

35 x 35 pixels, as applied to the parabola dataset. Based on ground

truth, the actual depth is Z = 92.3 and the actual local tilt is p = 1.0.

The small 5 x 5 window produces a non-distinct and inaccurate peak,

while the large 35 x 35 window also begins to show signs of inaccuracy.

An intermediate window size between 15 x 15 to 25 x 25 tends to

perform well. 65

4-5 Comparison of typical (a) unnormalized and (b) normalized MDC ta-

bles, for the same pixel in the corner dataset and using a constant

window size of 15 x 15. For this example, the flat peak in the unnor-

malized table yields inaccurate values of Z and p, as opposed to the

accurate and well-defined peak in the normalized table. 67

4-6 Typical histogram of the number of pointwise comparisons for each

(Z, p) bin. Notice that a higher number of correspondences are usually

found at tilt values and are thus more reliable, while the rest of the

table is sparsely populated. 69

4-7 Typical MDC tables for a 7 x 19 window applied to the corner dataset.

(a) Sparse point cloud representing the reliable values in the efficient

MDC table after thresholding. (b) Efficient MDC function obtained

by fitting a surface over the reliable points. (c) Basic (unnormalized)

MDC table for the same pixel and window size. 70

4-8 (a) Ground truth depth map and surface orientation map of corner

dataset. (b) Calculated depth map and surface orientation map by

using the MDC minimization approach. At a window size of 25 x 25,

81.4% of the surface orientations have been recovered correctly. . . . 72

5-1 (a) Typical Three Step Search (TSS) procedure. (b) Typical Diamond

Search procedure. The algorithm searches in five search steps using a

diamond pattern of step size 2, except for the last step where the step

size is reduced to 1. 76

5-2 Stages of the randomized stereo matching algorithm: (a) Pixels are

initially assigned random disparities; (b) Good matches (blue) are dis-

seminated to neighbors (red); (c) Random local search to improve es-

tim ate. 78

5-3 Dense disparity map for a synthetic image [9]. (a) Left image. (b)

Ground truth. (c) Disparity map using naive SAD. Notice that the cor-

ners are rounded as the uniformly weighted support window smooths

over depth discontinuities. (d) Disparity map using locally adaptive

support window. In this case, corners and edges are preserved. 82

5-4 Locally adaptive support weight computation [9]. The top row shows

the reference and target blocks, and the bottom row shows the respec-

tive support weights computed using Eq.5.6. The blue square denotes

the reference pixel. Pixels that are similar in color and close to the

reference pixel have larger support weights and appear brighter. After

computing the support weights for each block, we combine them by

pixel-wise multiplication to aggregate support only from similar neigh-

boring pixels. 83

5-5 Image dataset synthetici, consisting of shifted rectangular blocks. (a)

Reference (left) image. (b) Right image. (c) Ground truth disparity

map. Brighter regions have larger disparities (positive to the right),

and occluded areas are marked in black. 89

5-6 Image dataset synthetic2 of a simulated tilted plane. (a) Reference

(left) image. (b) Right image. (c) Ground truth disparity map. All

pixels have negative disparity values (i.e. shifted left), but brighter

regions have less negative disparities. Occluded areas are marked in

black . 89

5-7 Convergence of randomized algorithm. (a) Initial random disparity

field, with brightness indicating disparity values assigned to each pixel

(positive to the right). (b) End of first iteration. Notice that the top

left portions of homogeneous regions usually have incorrect disparities,

until a correct seed causes the rest of the region below and to the

right to be filled with the correct values. (c) Two iterations completed.

The opposite propagation directions eliminate incorrect disparities in

coherent regions. (d) By the end of iteration 5, almost all the pixels

have stopped changing values, except for occluded areas which are

inherently unstable due to the lack of matching correspondences. . . 90

5-8 Results for synthetic1 dataset. (a) Ground truth. (b) Disparity map

produced by randomized algorithm at the end of 4 iterations. (c)

Disparity map obtained from full search. 92

5-9 Results for synthetic2 dataset. (a) Ground truth. (b) Disparity map

produced by randomized algorithm at the end of 4 iterations. (c)

Disparity map obtained from full search. 92

5-10 Illustration of convergence rate. (a) Percentage of correct disparities

over 6 iterations for (a) the synthetici dataset and (b) the synthetic2

dataset, represented in blue solid lines. The green dotted lines denote

the accuracy of the full search method, which the randomized algorithm

should converge to in the limit. The percentages of correct disparities

are averaged over three trials and do not account for occluded regions. 94

5-11 Real image dataset Tsukuba. (a) Reference (left) image. (b) Right im-

age. (c) Ground truth disparity map, with bright regions representing

positive disparities (to the right). 95

5-12 Real image dataset Sawtooth. (a) Reference (left) image. (b) Right

image. (c) Ground truth disparity map. Note that the creators of this

dataset use brighter regions to denote larger disparities to the left. . . 95

5-13 Convergence of randomized algorithm for tsukuba dataset. (a) Initial

random disparity field. (b) End of first iteration. Note that majority of

disparity values have already been found accurately. (c) End of second

iteration. (d) After 5 iterations, the disparity field has converged. . . 96

5-14 Results for Tsukuba dataset. (a) Ground truth. (b) Disparity map

produced by randomized algorithm at the end of 4 iterations. (c)

Disparity map obtained from full search. Note that in (b) and (c),

negative values and values above a threshold of 20 have been removed

from the disparity maps. 98

5-15 Results for Sawtooth dataset. (a) Ground truth. (b) Disparity map

produced by randomized algorithm at the end of 4 iterations. (c)

Disparity map obtained from full search. Note that in (b) and (c),

negative values and values above a threshold of 20 have been removed

from the disparity maps. 98

5-16 Illustration of convergence rate for the Tsukuba dataset. (a) Percent-

age of correct disparities over 6 iterations. The blue line represents the

randomized algorithm, while the green line denotes the accuracy of the

exact full search solution. (b) Error maps between the full search and

randomized outputs after 1 iteration and 5 iterations. While the per-

centage of correct disparities seems fairly constant over 6 iterations,

the error map after 1 iteration reveals incomplete convergence. Af-

ter 5 iterations, however, most errors have been eliminated and the

randomized algorithm almost fully converges. 99

5-17 Illustration of convergence rate for the Sawtooth dataset, showing the

percentage of correct disparities over 6 iterations. The blue line rep-

resents the randomized algorithm, while the green line denotes the

accuracy of the exact full search solution. 100

5-18 (a) Plot of actual processing time taken against block width b, for 4

iterations of the randomized algorithm (in blue) and the full search

method (in red). (b) Plot of dimensionless time as a function of block

width, scaled against the reference time for a 3 x 3 block. Notice

that although the actual time for the randomized algorithm is higher

than that for the conventional full search, it incurs a smaller fractional

increase in processing time than the full search. 102

5-19 Plot of processing time taken against search window width w, for the

4 iterations of the randomized algorithm (in blue) and the full search

method (in red). Notice that the time taken for full search increases

with larger search widths, while the randomized algorithm is relatively

independent of the search parameter. 103

18

Chapter 1

Introduction

Since the earliest studies in visual perception, it is well known that humans use the

difference between the images in our left and right eyes to judge depth. Intuitively,

objects that are closer to the viewer exhibit a larger displacement between images

than objects that are further away. This visual disparity provides powerful depth

cues which shape our understanding of the world around us and guide the way in

which we respond to it.

Yet, while biological systems can easily interpret visual stimuli to perceive three-

dimensional structure, it has been challenging to mimic this behavior in computer

vision systems. Stereo matching is the process of computing a three-dimensional

reconstruction of the scene, given a set of images taken from different viewpoints.

This task involves automatically finding matching pixels between images and then

converting the measured disparity into 3D depths based on the scene and camera

geometry. The desired output is typically a dense depth map which assigns accurate

depths to each pixel in the input images.

Early work on stereo matching was motivated by applications in photogrammetry,

where the goal is to determine the shape of an object surface from a series of calibrated

images. For instance, topographic maps of the earth's surface may be generated from

overlapping aerial or satellite images. Before automatic stereo matching algorithms

were developed, operators would use a manual device known as a stereo plotter (Fig.

1-1). Adjacent pairs of photographs are shown to each eye, allowing the operator

Figure 1-1: Alpha 2000 analytical stereo plotter (Source: Wikipedia)

Figure 1-2: Modern stereo techniques can reconstruct a dense 3D model (right) from
a set of images (left and middle). [28}

to measure the apparent change in positions of surface features and trace constant

elevation contours using an artificial floating dot. Other previous research on stereo

matching has focused on robotic navigation and object recognition.

More recently, however, the trend has been towards creating realistic object models

for computer graphics and metrology applications (Fig. 1-2), as well as image-based

rendering. Reliable algorithms have been developed to reconstruct the 3D geometry

of a complex scene from thousands of partially overlapping images, or even generate

compelling 3D models of famous landmarks from online community photograph col-

lections [3}. Today, research on stereo matching has regained momentum as a result

of publicly available performance evaluations such as the Middlebury library [1, 23,

which allow researchers to compare new algorithms with the current state of the art.

This thesis explores different methods of quickly and robustly recovering quanti-

tative depth information from a set of stereo images, as outlined below:

In Chap. 2, we first study the specific geometry of stereo systems and present a

framework for understanding existing algorithms. Dense correspondence algorithms

generally work by computing and aggregating matching costs, from which disparity

estimates may then be obtained and refined. Depending on the exact mechanism,

these algorithms may be classified as local or global methods.

Chap. 3 presents a technique known as multi-baseline stereo, which combines mul-

tiple stereo pairs together in order to obtain precise, unambiguous depth estimates.

In multi-baseline stereo, individual pairwise similarity measures are aggregated into

a single function, allowing reliable matches to reinforce each other while eliminating

false matches. The method is described analytically, and experiments on synthetic

and real image datasets demonstrate its effectiveness and robustness.

Chap. 4 presents another method that improves the accuracy of depth estimates,

while at the same time recovering additional information about the surface properties.

Conventional stereo algorithms use fixed windows based on the implicit assumption

that the intensity patterns around corresponding points in different images remain

constant. In actual fact, however, foreshortening effects between different viewpoints

lead to local image deformations which give rise to inaccurate measurements. To

overcome this issue, we propose an algorithm that allows the matching windows

to deform according to the local surface orientation. Unlike conventional methods

which only consider depth, our proposed method performs correlation over multiple

dimensions of depth and local tilt. Efficient methods of performing multi-dimensional

correlation are also proposed and evaluated.

In Chap. 5, we shift our focus to the task of increasing the speed of stereo match-

ing. We introduce an iterative, randomized algorithm that efficiently computes dense

disparity maps. The algorithm begins with random guesses for correspondences,

which are often likely to be wrong. However, over the entire image, a few lucky dis-

parity guesses will almost give the correct match. The algorithm then propagates

these good matches to nearby pixels, based on the assumption that disparity maps

are piecewise smooth. An iterative scheme is employed to refine the disparity esti-

mates. Our theoretical analysis and experimental results show that such an algorithm

typically converges within a small number of iterations, and potentially brings about

significant savings in computation time and memory.

Finally, in Chap. 6, we summarize our work and indicate directions for future

work.

Chapter 2

Basics of Stereo Matching

In this chapter, we describe the fundamental principles behind stereo matching. First,

we study the geometry of stereo matching in order to understand how points in a

scene are imaged at different positions and orientations based on their distances from

the viewer. We then review techniques for finding a set of corresponding points

between two images. This task involves selecting a suitable similarity measure and

then employing local or global methods to identify correct matches.

2.1 Epipolar Geometry

The main task of an automatic stereo matching algorithm is to match a given point

in one image with its corresponding point in the other image. At first, this task

of establishing correspondences seems to require a search through the whole image.

However, the epipolar constraint specific to stereo systems reduces this search to a

single line. Consider a 3D point p being viewed from two cameras, as shown in Fig.

2-1. The point p projects onto the location xO in the left image with camera center

co. Given that the point p lies somewhere along this viewing ray to infinity, the

pixel xO in the left image projects onto a line segment in the right image, called the

epipolar line. The epipolar line is bounded on one end by the projection of the left

camera center co in the right image, called the epipole ei, and on the other end by

the vanishing point of the viewing ray from the left camera to p. A similar line

(R,)

Figure 2-1: Epipolar geometry of binocular stereo systems [281. A pixel in the left
image is constrained to lie along the corresponding epipolar line in the right image.

is obtained by projecting the epipolar line in the right image onto the left image.

These form a pair of corresponding epipolar lines, which are obtained by cutting the

image planes with the epipolar plane containing the point p and the camera centers

co and c1 . An object imaged on the epipolar line in the left image can only be

imaged on the corresponding epipolar line in the right image, and thus the search for

correspondences is reduced to a line.

In the case of calibrated cameras whose relative position is represented by a ro-

tation R and translation t, we may express the epipolar constraint more formally. A

pixel xO in the left image is then mapped onto the right image at location x1 by the

transformation

x1 = Rxo + t (2.1)

Given that the rays xo and x1 intersect at the point p, the vectors describing

these rays, namely x1 and RxO, and the vector connecting the two camera centers

c1 - co = t must be coplanar. Hence, the triple product is equal to zero, viz.

x1 - (t x Rxo) = 0. (2.2)

We thus derive the epipolar constraint

x1Exo = 0, (2.3)

where

0 -tZ ty

E tz 0 -t, R (2.4)

L- ty tX 0

is known as the essential matrix. The essential matrix E maps a point xO in the

left image to a line 11 = ExO in the right image. Since E depends only on the extrinsic

camera parameters (i.e. R and t), the epipolar geometry may be computed for a pair

of calibrated cameras. In the case of uncalibrated cameras, a similar quantity to

the essential matrix, known as the fundamental matrix, may also be computed from

seven or more point matches. The fundamental matrix captures both the intrinsic

and extrinsic parameters of the system of cameras, but serves the same function of

mapping points in the left image to lines in the right image.

Even though the epipolar geometry constrains the search for potential correspon-

dences along epipolar lines, the arbitrary orientations of these lines makes it inconve-

nient for algorithms to compare pixels. To overcome this issue, the input images are

commonly warped or rectified so that the epipolar lines reduce to corresponding hor-

izontal scanlines. Rectification may be achieved by first rotating both cameras such

that their optical axes are perpendicular to the line joining the two camera centers, or

the baseline. Next, the vertical y-axis of the camera is rotated to become perpendic-

ular to the baseline. Finally, the images are rescaled, if necessary, to compensate for

differences in focal lengths. In practice it would be difficult to arrange the two camera

optical axes to be exactly parallel to each other and perpendicular to the baseline.

Moreover, the cameras are often verged or tilted inwards so as to adequately cover

the region of interest. Hence, rectification is often carried out in software rather than

hardware [4].

After rectification, the camera geometry is transformed into a canonical form.

By considering similar triangles in the ray diagram, we may derive a simple inverse

relationship between depth Z and disparity d between corresponding pixels in the

two images, viz.

d = Bf (2.5)

In this equation, f is the focal length (measured in pixels) and B is the baseline.

The disparity d describes the difference in location between corresponding pixels in

the left and right images, i.e. (xo, yo) and (x1 , yi) = (xo + d, yo). By estimating the

disparity for every pixel in a reference image, we obtain a disparity map d(x, y), from

which the object depth may then be computed.

2.2 Finding Correspondences

Over the years, numerous algorithms have been proposed to find correspondences in

a set of images. These may be broadly classified into two categories.

The first approach extracts features of interest from the images, such as edges or

contours, and matches them in two or more views. These methods are fast because

they only use a small subset of pixels, but they also yield only sparse correspondences.

The resulting sparse depth map or disparity map may then be interpolated using sur-

face fitting algorithms. Early work in finding sparse correspondences was motivated

partly by the limited computational resources at the time, but also by the obser-

vation that certain features in an image produce more reliable matches than others.

Such features include edge segments and profile curves, which occur along the occlud-

ing boundaries. Unfortunately, these early algorithms require several closely-spaced

camera viewpoints in order to stably recover features.

Recent research has focused on extracting features with greater robustness and

repeatability, and thereafter using these features to grow into missing regions. To

date, the most successful technique for detecting and describing features is the Scale

Invariant Feature Transform (SIFT) keypoint detector [5]. The algorithm locates

interest points at the extrema of a Difference-of-Gaussian function in scale-space.

Each feature point also has an associated orientation, as determined by the peak

of a histogram of local orientations. Hence, SIFT features are robust to changes in

scale, rotation and illumination that may occur between different images. Using these

SIFT features, one may apply robust structure-from-motion algorithms to determine

image correspondences, compute the fundamental matrix with associated intrinsic

and extinsic camera parameters, as well as generate a sparse 3D reconstruction of the

scene. Such methods have been employed to reconstruct 3D geometry in situations

where the input images are uncalibrated [6] or from Internet photograph collections

[3].

The second approach seeks to find a dense set of correspondences between two or

more images, since recovering a smooth and detailed depth map is more useful for

3D modeling and rendering applications. Based on the taxonomy of dense correspon-

dence algorithms proposed by Scharstein and Szeliski [1], such techniques typically

involve the calculation and aggregation of matching costs, from which disparity val-

ues may then be computed and refined. Dense stereo techniques may also be further

subdivided into two main strategies: local and global. Local approaches determine

the correspondence of a point by selecting the candidate point along the epipolar

lines that minimizes a cost function. To reduce matching ambiguity, the matching

costs are aggregated over a support window rather than computed point-wise. On

the other hand, global methods generally do not aggregate the matching costs, but

instead rely on explicit smoothness assumptions to ensure accuracy. The objective

of global stereo algorithms is to find the disparity assignment which minimizes an

energy function that includes both data (cost) and smoothness terms.

In this thesis, we deal primarily with the problem of finding dense correspondences.

Subsequent sections will also explain both local and global methods in greater detail.

2.3 Similarity Measures

Regardless of the type of stereo algorithm used, a means of determining the similarity

between pixels in different images is key to disambiguating potential matches and

finding correspondences. In order to find where a given pixel x = (x, y) in the left

image Io appears in the right image I1, we use a fixed support window sampled at

locations {xi = (xi, y2)} around the pixel and measure the degree of similarity with

I1 at different disparities. A basic measure is the sum-of-squared differences (SSD)

function, given by

CSSD(X, d) = [1 (xi + d) - Io(xi)]. (2.6)

This similarity measure implicitly assumes that the pixel intensities around cor-

responding points in the two images remain constant, such that the SSD cost is

minimized at the correct offset. In the presence of image noise, the similarity mea-

sure may be made more robust to outliers within the window by imposing a penalty

that grows less quickly than the quadratic SSD term. A common example of such a

robust measure is the sum-of-absolute-differences (SAD) function, given by

CSAD(x, d) = IIi(xi + d) - Io(xi)[. (2.7)

In this case, the cost function grows linearly with the residual error between the

windows in the two images, thus reducing the influence of mismatches when the

matching cost is aggregated. Other robust similarity measures such as truncated

quadratics or contaminated Gaussians may also be used [28].

Furthermore, it is not uncommon for the two images being compared to be taken

at different exposures. To compensate for this, cost functions which are invariant

to inter-image intensity differences may be used. A simple model of linear intensity

variation between two images may be described by

Ii(x + d) = (1 + a)Io(x) + /, (2.8)

where a is the gain and 3 is the bias. The SSD cost function may then be modified

to take the intensity variation into account, viz.

CssD(x, d) = [Ii(xi + d) - (1+ a)Io(x) -'#]2 (2.9)

22

= Z [aIo(x) + # - (Ii(xi + d) - Io(x))]2. (2.10)
i

Hence, it is possible to correct for intensity variations across images by performing

a linear regression to recover the bias-gain parameters, albeit at a higher computa-

tional cost. More sophisticated models have also been proposed, which can account

for spatially-varying intensity differences due to vignetting. Alternatively, cost func-

tions that match gradients rather than intensities or subtract some window average

from the pixel intensities have also been shown to be robust to changes in exposure

and illumination.

Besides measuring the residual error in window intensities, another commonly

used similarity measure is the cross-correlation of the two displaced windows, given

by

Ccc(x, d) Io(xi)Ii(xi + d). (2.11)

The maximum correlation value among all the candidate disparities corresponds

to the most probable match. It is also worth noting that Eq. 2.12 is the spatial

convolution of the signal in Io with the complex conjugate of the signal in I1. Since

convolution in the spatial domain is equivalent to multiplication in the Fourier do-

main, the cross-correlation function may thus be computed efficiently by multiplying

the Fourier transforms of the two image windows and taking the inverse transform of

the result. Mathematically, this is expressed as

Ccc(x, d) = F 1{Io(x) * Ii(-x)} = T- 1 {Io(w)I*(w)}, (2.12)

where the asterisk superscript denotes the complex conjugate, W is the angular

frequency of the Fourier transforms (in calligraphic symbols) and F- 1 denotes the

inverse Fourier transform.

However, matching using cross-correlation can fail if the images have a large dy-

namic range. For instance, the correlation between a given pixel in the left image

and an exactly matching region in the right image may be less than the correla-

tion between the same pixel and a bright patch. Moreover, Eq. 2.12 is sensitive to

changes in illumination or exposures across images. To circumvent these limitations,

the normalized cross-correlation function is typically used, viz.

I [Io(xi) - Io(x-i)l [11(xi + d) - Ii(xi + d)
CNcc(X, d) (2.13)

[IO X2 - -12
Iox) - Io(xi)12 [Ii(xi + d) - Ii(xi + d)]

where Io and I1 are the mean intensities of the corresponding windows. The result-

ing correlation table is normalized such that a value of 1 indicates perfect correlation.

Finally, we describe a related form of correlation, known as phase correlation.

Phase correlation is based on the observation that the magnitudes of the Fourier

transform of two displaced images remain constant and only the phase in the trans-

form domain changes. The phase correlation function thus divides the frequency

spectrums. of the two image windows by their respective Fourier magnitudes before

taking the inverse transform, as given by

Cpc(x, d) = _F-{ .o(W) (2.14)
||10(W)||||1'1*(W)II

Consider the ideal case where the two image windows are simply displaced, i.e.

Ii(xj + d) = Io(xi). The Fourier transforms of each image window may be found

using the shift theorem, viz.

f{I1 (xi + d)} =Ii(w)e--2rjdw - Io(w) (2.15)

Hence, the phase correlation function is given by

Cpc(x, d) = -l{e-2 }, (2.16)

which is a Dirac delta function at the correct disparity value d. In theory, phase

correlation thus gives a sharper peak, which facilitates the disambiguation of potential

matches. A further advantage of working with Fourier magnitudes of the displaced

windows is the potential to compensate for rotations between the two images. Since

the magnitudes of Fourier transforms are relatively insensitive to translations, the

magnitude images may be rotated and aligned in Fourier space so as to guide the

alignment of the images in the spatial domain. The aligned images may then be com-

pared using a conventional translational similarity measure to recover the matching

disparity.

2.4 Local Methods

Local area-based stereo methods match pixel values between images by aggregating

the matching costs over a support window. In order to achieve a smooth and detailed

disparity map, the selection of an appropriate window is critical. The optimal window

should be large enough to contain enough intensity variation for reliable matching,

particularly in areas of low texture. On the other hand, it should also be small

enough to minimize disparity variation within the window due to tilted surfaces or

depth discontinuities. Using too large a window can lead to undesirable smoothing

and the 'fattening' or 'shrinkage' of edges, as the signal from a highly textured surface

may affect less-textured surfaces nearby across occluding boundaries. While in the

simplest case the support window can be a fixed square window, several techniques

have been proposed to balance the trade-offs involved in window selection. Generally,

these methods use a variable support which dynamically adapts itself depending on

the surroundings of the pixels being matched, such as windows with adaptive sizes

and shapes [7], shiftable windows [8], and segmentation-based windows which only

consider the contributions of pixels at the same disparity [9].

After computing and aggregating the matching costs, the disparity of a given pixel

may be easily computed by performing a Winner-Takes-All (WTA) optimization, i.e.

choose the disparity value associated with the minimum matching cost. Repeating

the process for every pixel in the image produces a disparity map accurate to the

nearest pixel.

Nonetheless, in some applications such as image-based rendering or 3D modelling,

a pixel-wise disparity map is often not accurate enough and produces implausible

object models or view synthesis results. Hence, many local stereo algorithms also

employ an additional sub-pixel refinement step. Several techniques may be used to

obtain better sub-pixel disparity estimates at little additional computational cost.

One may fit a curve to the matching costs evaluated at discrete integer values around

the best existing disparity and then interpolate to find a more precise minimum.

Another possibility is to perform iterative gradient descent on the SSD cost function,

as proposed by Lucas and Kanade [101. This approach relies on the assumption of

brightness constancy in the local spatial and temporal neighborhoods of the displaced

frames, i.e.

I(x + u6t, y + v6t, t + 6t) = I(x, y, t), (2.17)

where u = g and v = d are the x- and y- velocities of the image window,

also known as the optical flow components. Setting the total derivative of the image

brightness (Eq. 2.17) to zero then yields the optical flow constraint equation

Izu + IYv + It = 0, (2.18)

where the spatial and temporal partial derivatives I., I, and It may be estimated

from the image. Since Eq. 2.20 applies for all pixels within the image window, we

can solve an overdetermined system of equations for the optical flow components and

determine the subpixel disparity.

Apart from increasing the resolution of the disparity map, other possible post-

processing steps include cross-checking between the left-to-right and right-to-left dis-

parity maps to detect occluded areas, applying a median filter to eliminate mis-

matched outliers, and surface-fitting to fill in holes due to occlusion.

2.5 Global Methods

Unlike local methods which compute the disparity of each pixel fairly independently,

global methods typically perform an iterative optimization over the whole image [1].

The task is to label each pixel with the disparity solution d that minimizes a global

energy function

E(d) = Ed(d) + AEs(d), (2.19)

where Ed(d) and E,(d) represent the data and smoothness terms respectively, and

the parameter A controls the influence of the smoothness term [1]. The data term

Ed(d) measures the degree of similarity between each pixel in the reference image and

its corresponding pixel in the other image at the current disparity assignment d, and

may thus be defined as

Ed(d) = EC(x, y, d(x, y)), (2.20)
x)y

where C(x, y, d(x, y)) is the point-wise or aggregated matching cost. The smooth-

ness term E,(d) performs a similar function to cost aggregation in minimizing spu-

rious matches and making the disparity map as smooth as possible. A simple way

to mathematically codify the smoothness assumption is to minimize the difference in

disparities between neighboring pixels, viz.

Es(d) = Zp(d(x, y) - d(x + 1, y))+p(d(x, y) - d(x, y + 1)), (2.21)
xly

where p is some monotonically increasing function of the disparity differences.

However, this simplistic smoothness term tends to make the disparity map smooth

throughout and thus breaks down at occluding boundaries. Intuitively, depth dis-

continuities tend to occur along intensity edges. Hence, a modified smoothness term

can be made to depend on the intensity differences on top of disparity differences, as

given by

ES(d) = E pM~(x, y) - d(x + 1, y)) -pr (||I(x, y) - I(x, y + 1)|) (2.22)
xly

The solution of the global energy minimization problem is a maximum a poste-

riori estimate of a Markov Random Field (MRF). Early methods, such as iterated

conditional modes (ICM) or simulated annealing, were inaccurate or very inefficient.

Recently, however, high-performance algorithms such as graph cuts, loopy belief prop-

agation (LBP) and tree-reweighted message passing have been developed, forming the

basis for many of the top-performing stereo methods today. An MRF optimization

library is also available online [111.

Finally, another noteworthy category of global methods makes use of dynamic

programming. These techniques consider two corresponding scanlines and compute

the minimum-cost path through the 2D matrix of all pairwise matching costs functions

along those lines. Each entry of the matrix is computed by combining its cost value

with one of its previous entries. As the optimization solution is one-dimensional,

dynamic programming can produce extremely fast results and has been employed in

real-time stereo applications. Unfortunately, consistency between scanlines cannot

be well-enforced as scanlines are considered individually, often leading to streaking

effects in the resulting disparity map.

2.6 Summary

While many variants of stereo matching algorithms exist, these may be broadly classi-

fied into local and global methods. Although global methods currently produce some

of the best stereo matching results (according to the Middlebury evaluation website

[1]), they are still usually much slower than local methods, since global optimization

is an NP-hard problem while local matching runs in polynomial time. In the rest of

this thesis, we will primarily consider local window-based methods, while proposing

novel refinements to increase the robustness and efficiency of disparity computation.

Chapter 3

Multiple-Baseline Stereo

3.1 Introduction

Having discussed the fundamentals of binocular stereo matching, we now extend the

principles to stereo systems with multiple cameras. In multi-view stereo, the goal

is to recover quantitative depth information from a set of multiple calibrated input

images. Since more information is available from different perspectives of the scene,

dense high-quality depth maps as well as realistic 3D object models are often possible

with multi-view stereo.

Many multi-view stereo algorithms have their roots in traditional area-based

binocular stereo, which relies on the observation that objects in a scene are imaged

at different locations depending on their distance from each camera. Given a point in

a reference image, the stereo matching process searches for the corresponding point

along the epipolar line of another image. The best match is decided using a criterion

that measures similarity between shifted image windows, such as by minimizing the

sum of squared differences (SSD). Finally, the relative locations of the matched point

pair are triangulated to determine depth.

For the canonical stereoscopic system with two cameras positioned such that their

optical axes are parallel and x-axes are aligned, the epipolar lines conveniently reduce

to scanlines. In this case, the disparity d between corresponding points in the left

and right images is related to the distance z of the object by

d B Fd B= F (3.1)

where B and F are the baseline and focal length respectively. Eq. 3.1 shows that

disparity is directly proportional to baseline, and hence the precision of depth cal-

culation increases with a longer baseline. However, a longer baseline requires the

search to be done over a larger disparity range and increases the chance of occlusion,

thereby making false matches more likely. Presumably, multiple images with different

baselines may be used to disambiguate potential matches and reduce errors in depth

estimates.

Okutomi and Kanade propose one such method to integrate multiple baseline

stereo pairs into an accurate and precise depth estimate [12]. Their key insight is

that since disparity is inversely proportional to distance (according to Eq. 3.1), the

calculation of the similarity criterion (chosen to be SSD) may be carried out in terms

of inverse distance rather than disparity, as is typically the case. Computing SSD

values using inverse distance is advantageous because unlike disparity which varies

across baselines, inverse distance is a common measure throughout every stereo pair.

Hence, there is a single distance (i.e. the true distance) at which the SSD values from

all stereo pairs are minimized. Summing these SSD values into a single function,

called SSSD-in-inverse-distance, then gives an unambiguous and precise minimum

at the correct matching position. In effect, the SSSD-in-inverse-distance function

meaningfully combines different stereo pairs to produce a depth estimate that is more

refined than that from any single pair. Such a approach is robust to noise and can

handle challenging scenes with periodic patterns where traditional stereo methods

would otherwise fail.

In this chapter, we shall study the multi-baseline stereo approach in detail. Section

2 provides a theoretical analysis of the method, while Section 3 describes our soft-

ware implementation. In particular, we propose the novel product-of-error-correlation

(PEC) function as an alternative function to aggregate individual stereo pairs. In Sec-

tion 4, we present experimental results with synthetic and real scenes to demonstrate

the utility of the algorithm. Finally, we conclude by evaluating the advantages and

limitations of this method.

3.2 Theoretical Analysis

In this section, we present the mathematical justifications behind the multi-baseline

stereo method in [12] and demonstrate how it reduces ambiguity and increases preci-

sion of measurements.

Consider a row of (n + 1) cameras CO, C1, ..., C, whose optical axes are perpendic-

ular to the line, thus resulting in a set of n stereo pairs with baselines B 1, B 2 , ..., Bn

relative to a base view Co. Following Eq. 3.2, the correct disparity d,,i between Co

and an arbitrary view C for an object at distance z is

d,, - B (3.2)
z

Without loss of generality, we consider only an x-z world plane, such that the

images are 1D functions. Assuming noise may be neglected, the image intensity

functions fo(x) and fi(x) near the correct matching position may then be written as

fo(X) = f(z)

fi(x) = f (x - d,,) (3.3)

For a pixel at position x on the image fo(x), the SSD cost function for the candi-

date disparity di over a window W is defined to be

Ed(x,di) = (fo(x+j) - fi(x+di +j)) 2

jEW

- (f(x+j) - f(x+di - dr,i + j))2 (3.4)
jEW

The matching window is identified when the SSD function Ed(x, di) reaches a

minimum. Clearly, the disparity di that minimizes Ed(x, di) occurs at di = d,,i, and

is taken to be the disparity estimate at x.

Observe that in the presence of periodicity in the image, the SSD function (as

defined in Eq. 3.4 with respect to disparity) exhibits multiple minima and thus leads

to ambiguity in matching. For instance, if the image f(x) appears the same at pixel

positions x and x + a, a -h 0

f(x+j) = f(x+ a+ j), (3.5)

then from Eq. 3.4,

Ed(x, dr,i) = Ed(x, d,,i + a) = 0, (3.6)

thereby resulting in two possible minima and a false match at dr,i + a. Since this

false match occurs at the same disparity location for all stereo pairs, the inclusion of

multiple baselines does not disambiguate the potential matches.

Guided by our earlier intuition, we now rewrite disparity in Eq. 3.2 in terms of

inverse distance (= 1, viz.

I,, = BiFCr

di = BiFC

(3.7)

(3.8)

Using Eqs. 3.7 & 3.8,

candidate inverse distance

E((x, () =

the SSD function may also be expressed in terms of a

(, so that Eq. 3.4 becomes

(3.9)E (f (x + j) - f (x + BiF((- (r) + j))2.
jEW

Lastly, we define the SSSD-in-inverse-distance function Ec(12 ...n)(x, () by taking

the sum of SSD functions with respect to inverse distance for the n stereo pairs:

n

E((12...n)(X,()= Ec(x (X)
i=1

- S (f(x + j) - f(x + BjF((- (r) + j)) 2 (3.10)
i=1 jEW

Now, we reconsider the problem of ambiguity in the input images, as stated in

Eq. 3.5. Although each SSD function with respect to inverse distance still exhibits

ambiguous minima, i.e.

E((x, () = E(x, (, + a) =0, (3.11)
Bi F

we can show that the SSSD-in-inverse-distance function reaches a minimum only

at the correct (,, i.e.

EC(12...n) (x, () = (f(x + j) - f(x + BF((- (r) + j)) 2

i=1 jEW

> 0 = EC(12...n)(x, (r) V(# (r (3.12)

To see this, suppose for a moment that

(f (x + j) - f(x + BiF((- (r) + j))2 = 0. (3.13)
i=1 jEW

For the case of Eq. 3.5, Eq. 3.13 attains equality only when

BiF((- (r) = a, Vi = 1, 2,..., n (3.14)

However, if B1 # B 2 $... 7 Bn and ($ (,, Eq. 3.14 obviously cannot hold

for all i. Consequently, Eq. 3.13 also does not hold and its left-hand side must

be positive, thus validating Eq. 3.12. In other words, the SSSD-in-inverse-distance

function produces a clear, unique minimum at the correct matching position and thus

eliminates ambiguity arising from patterns in the input images.

This disambiguation of potential matches is best illustrated graphically. The

authors of [121 took nine images of a highly periodic grid pattern at various camera

positions separated by lateral displacement b. Fig. 3-1 shows the SSD values against

normalized inverse distance for various baseline stereo pairs. Shorter baselines exhibit

fewer minima but with less precision, while longer baselines produce sharper minima

but with greater ambiguity. Evidently, any single SSD matching function will not

yield a depth estimate that is both accurate and precise. However, summing these

SSD functions in succession gives rise to a minimum at the correct position that

becomes sharper as more stereo pairs are used, as shown in Fig. 3-2. Therefore,

the effect of using the SSSD-in-inverse-distance function with enough baselines is to

resolve any matching ambiguities and to increase precision of the depth estimate.

Finally, it is worth noting that while the above theoretical analysis applies to

the SSD cost function, the multi-baseline method does not place restrictions on the

choice of similarity criterion. The above theoretical analysis is thus valid for other

cost functions which may be more robust than SSD.

3.3 Implementation

We implement the Okutomi-Kanade multi-baseline stereo algorithm with two main

modifications, as described below.

3.3.1 Correlation-based Similarity Measures

First, we use Normalized Cross-Correlation (NCC) instead of Sum of Squared Differ-

ences as the measure of similarity, since NCC is functionally equivalent to SSD except

that the NCC function should be maximized rather than minimized (see Sect. 2.3).

Moreover, NCC has the added advantage of being invariant to changes in the mean

intensity value and the dynamic range of the windows.

The NCC function between two images Io and I, for a window (W, Wy) centered

at a pixel (x, y) is defined to be

(b)

10 is *

I

(b)

Figure 3-1: SSD as functions of normalized inverse distance for various baselines: (a)
B = b, (b) B = 2b, (c) B = 3b, (d) B = 4b, (e) B = 5b, (f) B = 6b, (g) B = 7b, (h)
B = 8b. The horizontal axis is normalized such that 8bF = 1. [12]

Z

Mr

I t-la.-

iVkrse depth

Figure 3-2: Effect of combining multiple baseline stereo pairs. Every time more stereo
pairs are introduced by successively halving the baselines, the minima of the SSSD-
in-inverse-distance function become fewer and sharper. When all the images are used,
there is a clear minimum at the correct inverse depth. [12]

(D~x, y d, dy)EeW ' EyEWy (,O(X,Y)-T0(x-,y))' lifxido,yidy)-li(xifd))

XT EWx yEwy (10(,y)-IO(xy)) 2 Z W (Ii(xIdx,yidy)-I(xfdo,yidy)) 2

(3.15)

Each element of the resulting correlation table gives the degree of similarity be-

tween image windows for a candidate disparity (dr, dy), so that the peak represents

the best disparity estimate of the corresponding point in the second image. To further

improve processing speed, we perform an alternative form of correlation, known as

error correlation (EC) [13]. The EC function may be expressed as

T'(x yd, dy4) zEx Egy y[Io(x,y)+Ii(x+do,y+dy)-IIo(x,y)-Ii(x+dx,y+dy)I] (3.16)(zEWx ZyEWy[Io(x,y)±ih(x+dx,ydy)]

As before, a correlation table is generated whose peak corresponds to the disparity

estimate, albeit using only cheap addition operations rather than costly multiplica-

tions (in either the spatial or Fourier domain) for the standard NCC function. Like

Eq. 3.15, Eq. 3.16 also does not give unfair preference to high intensity pixels and is

normalized so that a computed value of 1 indicates perfect correlation while a value

of 0 indicates no correlation.

3.3.2 Product of EC-in-inverse-distance (PEC)

The second modification pertains to the method of aggregating similarity measures.

Following the Okutomi-Kanade approach, we may re-express the NCC or EC func-

tions (Eqs. 3.15 and 3.16) in terms of inverse-distance rather than disparity. However,

instead of taking the sum of correlation tables, we multiply the correlation table from

one stereo pair, element-by-element, with those generated from all other stereo pairs

to obtain a single "product of EC-in-inverse distance" (PEC) table. Although multi-

plication is computationally more expensive than addition, combining the correlation

tables via multiplication reduces ambiguity with fewer images and produces a sharper

peak compared to summation. Disambiguation is made more efficient because any

correlation value that does not appear in each of the individual correlation tables

is automatically eliminated from the resulting PEC table instead of being retained,

which is the case if the tables are summed or averaged. Conversely, correlation values

that are identical in location are amplified exponentially rather than linearly due to

the multiplicative operation. By simultaneously eliminating false correlation peaks

and amplifying potential true peaks, the peak of the resulting PEC table then becomes

more well-defined.

We illustrate this effect graphically using a set of five synthetic images of a ramp

function illuminated by a random speckle pattern, taken from equally-spaced positions

(the central view is shown in Fig. 3-5). Using a small window size of 3-by-3-pixels, the

disparity for a point in the reference view (Image 3) is not discernable in any of the

individual correlation tables. However, when combined together (see Sect. 3.3.3 for

details), the peak of the resulting PEC table is easily resolved and may be measured

to sub-pixel precision.

In effect, the PEC-in-inverse-distance table is a zero-dimensional correlation of

multiple correlation tables. It merges individual correlations computed for different

Images 1 & 3 Images 2 &3

50

Images 4 & 3

-10 -10D

Images 5&3

m ' -20
-10 -40

Figure 3-3: Individual correlation tables for each stereo pair in the synthetic image
dataset. The true matching peak is not discernable in any of the tables alone.

Corrected Correlation Table

3.5

2.5

5 ...---- -40

-200

100

-5 -10 -40 2

Figure 3-4: Corrected PEC table using element-by-element multiplication of the in-
dividual correlation tables in Fig.3-3. The true matching peak is easily resolved and
measured.

stereo pairs into a common reference system, and allows us to find the best candidate

depth based not only on the correlation values, but also on the coherence between

the correlation functions.

3.3.3 Description of Algorithm

With the above modifications in mind, the multi-baseline stereo algorithm seeks to

find the inverse distance (that maximizes the PEC-in-inverse distance function:

PEC(x, y,() = rJ4i(x, y,() (3.17)

i=1

ewx E ye [(Io(x,y)+Ih(x+BiF(,y)-|Io (x,y)-Ih(x+BjF(,y)} (8
~~E,,, E YWy [Io(x,y)+Ih(x+BjF(,y)]
i=1

where we have simplified the expression by noting that dy = 0Vx, y for a set of n

stereo pairs laterally displaced in only the x-direction. For ease of implementation,

however, we normalize the disparity values for each stereo pair with respect to a

reference baseline Brei, and use this normalized disparity as the common variable for

optimization instead of using inverse distance. In mathematical terms,

B
d, = BtFC = B BrefF(= Rjdre5, (3.19)

Bref

where R, = Bi is the baseline ratio for the i-th stereo pair. Eq. 3.19 implies that
Bref

each element of a correlation table (representing some candidate disparity di for that

particular pair) can be mapped to a location in the correlation table of a reference

stereo pair, given the geometric constraints that the points must satisfy. Once this

is done for all tables, the reference disparity dref is effectively equivalent to inverse

distance, since the entries of each transformed table now indicate the same depth.

Substituting Eq. 3.19 into Eq. 3.20 yields the revised multi-baseline stereo opti-

mization evaluation function with respect to a reference disparity dref:

P y, dE)= ye-Wy [I(x,y)+I(x+Ridreef,y)-II(x,y)-I(x+Ridref,y) . 2PEC(x, Y, dref)=1 ZW Zxewx EyE wy [I(x,y)+I(x+Ridref,y) (3.20)

In practice, we maximize Eq. 3.20 using two approaches that differ only in al-

gorithmic implementation. The first and more straightforward approach performs

pairwise correlation on a set of images with respect to a point on a reference image.

The individual correlation tables are then mapped onto the correlation table for a

reference stereo pair using Eq. 3.19-, and multiplied element-wise to obtain the PEC

table. Since pixel resolution for longer baselines correspond to subpixel resolution for

shorter baselines, we interpolate the correlation tables accordingly during the map-

ping step. Interpolated entries that lie outside the range of the individual pairwise

correlation tables are assigned a value of 1 so as to effectively ignore them when mul-

tiplying the tables together. However, this might unduly weight those entries with

terms from only a subset of all possible pairwise tables. To ensure that the shape of

the PEC table is preserved, we then weight each PEC entry by the squared number

of individual correlation tables that contributed to its product. The resulting peak

represents the true disparity for the reference stereo pair, which corresponds to a

unique depth.

While the first method closely follows the reasoning presented in Sect.3.3.2, it

requires n correlation tables to be generated and stored, which slows down processing.

The second method hence aims to build the PEC table in a single step, thus reducing

the amount of memory and memory accesses by a factor of n. For each entry in

the correlation table for a reference stereo pair, the corresponding element in every

other pairwise correlation table is located based on the geometric constraint (Eq.

3.19) and multiplied directly into the reference table entry. In this way, pairwise

correlation tables do not have to be separately generated and the PEC table is built

more efficiently. From several experimental trials, we have found the second method

to be 10-20 times faster than the first method.

Given a set of n + 1 images, we select a reference image and apply the efficient

PEC optimization algorithm on a sliding window of user-defined size, with the image

dataset and baselines as inputs. For a given window, the disparity corresponding to

the peak of the resulting PEC table is determined and stored in a disparity map. To

further refine the disparity measurements, we may also fit a Gaussian curve to the

peak of the PEC table to obtain subpixel disparity estimates.

Finally, we filter the disparity estimates to keep only high-confidence values. Two

filtering criteria are used. First, we recall that dy = 0Vx, y for a set of stereo pairs

laterally displaced in only the x-direction. Hence, any disparity estimate with a

y-coordinate exceeding a threshold close to zero is deemed faulty and filtered out.

Second, we deem a disparity (or depth) estimate valid only if the peak PEC value

exceeds a certain threshold. Too low a PEC value indicates that not all images are

correlating well with the window in the reference view, perhaps due to the lack of

visibility or specularities, and thus the corresponding disparity estimate is eliminated.

3.4 Results

To demonstrate the effectiveness of the PEC-based multi-baseline stereo algorithm,

we have applied it on both synthetic and real stereo images. We also compare its

performance to that of conventional binocular stereo.

3.4.1 Synthetic Images

As mentioned earlier, the synthetic image dataset consists of 5 images of a ramp

function taken at equally spaced positions along the x-axis. A speckle illumination

pattern is artificially projected to increase signal-to-noise ratio and avoid problems

arising from insufficient texture or varying brightness. The central view (Image 3)

is taken to be the reference view (Fig. 3-5a), and the other views are generated by

shifting each point by the projected disparity within a range of 15-25 pixels using

Fourier-based translation. Fig. 3-5c shows the disparity map for the Image 1-3 stereo

pair, recovered using the proposed multi-baseline stereo algorithm with a 5-by-5-pixel

window. The kinks in the disparity map are due to the limited pixel resolution in

Figure 3-5: (a) Central view of synthetic image of ramp function. (b) Grouth truth
disparity map. (c) Disparity map obtained using the PEC-based multi-baseline stereo
method with a 5-by-5 pixel window.

estimating the peak of PEC tables. Visual comparison with ground truth (Fig. 3-5b),
however, reveals the accuracy and robustness of the algorithm in reconstructing the

shape of the ramp, even with a small correlation window.

3.4.2 Real Images

Encouraged by these results, we tested the algorithm on a real-world scene of an

approximately-Lambertian carton, taken again at 5 equally locations along the x-axis

and cropped to include only the corner of the carton (Fig. 3-6a). The whole process

took roughly 2 minutes in MATLAB on a 2GHz Core 2 Duo computer. Fig. 3-6b

shows the 3D surface reconstruction of the carton from the perspective of the central

reference image. Majority of the points have been reconstructed accurately, in spite

of the large disparities exceeding 40 pixels for the closest objects, thereby attesting to

the robustness of PEC-based correlation correction. However, the algorithm performs

poorly for regions with low texture, which is expected since the signal-to-noise ratio

is too low for correlation to be carried out accurately. After filtering, this results

in holes in the disparity map and 3D surface. Furthermore, the disparity map is

especially noisy along the edges of the central image, roughly corresponding to the

edges of the carton. These erratic spikes occur due to the effect of occlusions along

the boundaries of the carton's silhouette. Images taken with large baselines are much

less likely to see points on the carton's edge and thus no match can be found. As

d

00 00

Figure 3-6: (a) Central reference view of carton dataset. The orange rectangle outlines
the region of interest for correlation. (b) 3D surface reconstruction of carton. Holes
and inaccuracies arise for regions with low texture, while disparity estimates along
the right and left edges are noisy due to occlusion.

the baselines become longer, the effect of geometric aberrations also becomes more

severe. Both effects substantially increase the probability of false matches and thus

diminish the accuracy of the algorithm.

Nonetheless, in general, the PEC-based multi-baseline stereo algorithm manages

to obtain relatively accurate distance estimates for highly-textured Lambertian sur-

faces. Since it accumulates multiple images, sufficient precision is still achievable

while avoiding matching ambiguities.

3.4.3 Performance Comparison

Lastly, we compare the performance of the multi-baseline algorithm with that of

conventional binocular stereo. Fig. 3-7 shows the percentage of correct disparities

recovered using both methods for the synthetic random-dot image dataset. A pixel

is defined to have a correct disparity if its value differs from the ground truth by less

than 1, and occluded pixels are also ignored in calculating percentages. For window

sizes larger than 7 x 7, both the multi-baseline and binocular stereo methods are

able to accurately recover the disparity of the image pair, because the larger windows

contain sufficient intensity variation to achieve reliable matching. However, at a small

support window size of 3 x 3, binocular stereo using a single baseline only recovers

I I I -

100 --------- --- --- A -aI - -- -

9 5 ---- --------- -------------------------------

80 ------------- ---------- ---

75,----------- ----------------------------.----------------- -A- Multi-baseline -
---Single baseline

70
3 5 7 9 11

Support window width (pixels)

Figure 3-7: Plot of percentage of correct disparities against the width of the support
window, for the multi-baseline method (blue) and conventional binocular stereo (red)
applied to the synthetic image dataset. The multi-baseline method is robust against
different sizes of support window due to the elimination of spurious matches through
cost function aggregation.

about 70% of correct disparity, compared to 97% for the multi-baseline method. This

shows that the multi-baseline algorithm is fairly robust and insensitive to different

support window sizes. Even when there is insufficient signal for conventional binocular

stereo to select the true cost minimum, the aggregation of signal content from other

baselines and the elimination of false minima through element-wise multiplication

enables the multi-baseline approach to still perform well.

3.5 Discussion

Having seen the utility of multi-baseline stereo, we shall now briefly discuss its ad-

vantages and limitations.

One key advantage of multi-baseline stereo is that information from all the stereo

pairs are integrated into a final decision of the true disparity, as opposed to being used

sequentially to refine correspondence estimates. Using the SSSD-in-inverse distance

or PEC evaluation functions, geometric consistency across stereo pairs is elegantly

enforced all at once without relying on the accuracy of previous correspondence mea-

surements that may be noisy and faulty.

Furthermore, the multi-baseline stereo approach does not restrict the choice of

similarity criterion, and thus the cost function may be freely changed depending

on the application. In our implementation, we employed error correlation, which is

well-suited for real-time compressed image processing. Other sophisticated similarity

measures such as shiftable windows [8], adaptive windows [7] or locally adaptive

support weights [9] may also be used to better preserve depth discontinuities. In

particular, using correlation functions opens up possibilities for employing hierarchical

coarse-to-fine processing, since correlation values obtained at different resolutions may

be summed together.

On the other hand, a major drawback to the multi-baseline stereo method is that

it only gives a depth map from a reference perspective, thus unduly weighting the

significance of one image over the rest. Parts of the scene that are occluded in the

reference image cannot be reconstructed using this method.

Also, while the algorithm uses multiple stereo pairs, not all possible pairs of images

are exploited and more information (even if redundant) may presumably be extracted

by extending the algorithm. However, using all possible pairs causes the algorithmic

complexity to scale with 0(n2) in the number of images, instead of 0(n), making the

extended method unsuitable for large image datasets.

Another limitation of the multi-baseline stereo technique is that it reconstructs

surfaces using a fronto-parallel approximation (i.e. each point in a scene is modelled

as a flat plane perpendicular to the optical axis) and is thus sensitive to differences

in foreshortening. This is not optimal when reconstructing slanted surfaces, such as

that of the drink carton. Warped windows might be used to overcome this problem.

In Chap. 4, we also describe a method to account for surface orientations when

performing stereo matching.

Finally, this method implicitly requires the object to be visible in almost all views.

Hence, it performs poorly for widely-distributed views, because the effect of occlusions

becomes so significant that good matches between image windows cannot be found.

More sophisticated occlusion reasoning may then have to be incorporated into the

optimization cost function for larger baselines.

Chapter 4

Multi-Dimensional Correlation

4.1 Introduction

The central task of stereo matching is finding corresponding points between different

images. To determine a match, conventional area-based techniques use a fixed support

window to measure the degree of similarity between two image regions. This implicitly

assumes that all points within -the window are locally fronto-parallel so that the

intensity patterns around corresponding points are identical and only displaced from

each other. Although this assumption is valid for small window sizes, in general,

the viewing geometry and local surface orientation with respect to the camera cause

pixel displacements within the support window to vary. Hence, correlation using fixed

windows may produce an incorrect peak value, resulting in poor depth estimates.

Instead, support windows should be deformed based on the surface orientations of

the enclosed regions to compensate for this foreshortening effect.

To describe three-dimensional shape, the local surface normals and curvatures

may be computed by fitting a spline function over the resulting point cloud after

triangulation. However, this is not ideal because fixed window correlation incurs

errors due to foreshortening or noise and thus the fitted surface is also likely to be

inaccurate. Moreover, the original images which inherently contain information about

the surface properties are not fully utilized. A stereo matching algorithm that directly

considers surface orientation while searching for the best depth is thus desirable.

This chapter presents an algorithm that simultaneously recovers both depth and

surface orientation from a set of images. The imaged surface is locally approximated

by a plane and the shape of the support windows is altered based on the plane's

orientation. Unlike conventional methods which only consider depth, the proposed

method performs correlation over multiple dimensions: one for depth and two for

surface orientation. Alternatively, the use of three cameras enables the 2D surface

orientation search to be reduced to two 1D searches along epipolar lines. Finally,

to reduce computational cost, we propose an efficient way of organizing the corre-

lation process by building the correlation table after each pixel comparison, thereby

minimizing the number of redundant comparisons.

4.2 Related Work

Numerous local stereo matching techniques have been proposed to counter the effects

of projective distortion. An early approach was proposed by Kanade and Okutomi [7]

to adaptively change the shape and size of the support window for each pixel. Their

algorithm models the uncertainty of disparity estimates within a window based on

the local statistics of intensity and disparity. In so doing, one can find the optimal

window that estimates disparity with the lowest uncertainty by balancing the trade-

off between signal-to-noise ratio and depth variation. However, the adaptive window

algorithm requires an iterative search for the best windows for every pixel, which is

usually very computationally expensive. Moreover, the algorithm does not explicitly

extract the local surface orientations and only gives a depth estimate as its output.

Other methods compute the surface orientation by treating the local image dis-

tortions from surface tilt as useful signal rather than noise to be minimized. Jones

and Malik used a set of linear oriented filters at different scales to directly recover

local surface orientations [163. Their approach is inspired by how the human visual

system makes use of orientation and spatial frequency differences between the left and

right views to perceive 3D shape. Robert and Hebert search for the best homography

that maps a window in the left image to a skewed window in the right image [17].

The most likely orientation for a given window is found by minimizing the matching

cost over the space of all possible window skewing parameters, as determined from

knowledge of epipolar geometry and intrinsic camera parameters. While these meth-

ods directly measure local surface orientation, they unfortunately treat the problem

of finding surface orientations as separate from that of depth estimation by assuming

that point correspondences have already been correctly and precisely found. Hence,

these methods do not take into account the local window deformations needed to

refine depth estimates.

Devernay and Faugeras propose a fine correlation algorithm that allows the win-

dow to locally deform between image pairs [18]. For a given pixel (x, y) in the left

image with disparity d(x, y), nearby pixels have a disparity close to d(x, y) but dis-

torted by higher order terms in the local Taylor expansion of disparity. Hence, a

square window in the left image appears as a sheared and slanted rectangle in the

right image according to the local variation of disparity. The fine correlation algorithm

first treats the surface as locally fronto-parallel, and then estimates the disparity and

its derivatives that maximize the correlation between both image regions. From the

derivatives of disparity, it is then possible to determine the surface differential proper-

ties such as orientation and curvatures from the image data. Although the method of

Devernay and Faugeras overcomes the limitations of the fronto-parallel assumption,

it however represents the local window deformations in terms of disparity derivatives

rather than surface orientations. Therefore, since different image pairs have different

disparities and thus derivatives, information from multiple images cannot be easily

combined.

Hattori and Maki also employ an iterative framework that initially assumes the

disparity to be locally constant and then accounts for surface orientation to refine

the depth estimate [19]. However, instead of doing an exhaustive search for the

parameters of image distortion, their algorithm directly computes surface orientations

from intensity gradients within the support window, assuming an affine intensity

variation model to compensate for differences in image contrast. With a similar

intent of increasing computational efficiency, Xu and Ahuja propose a three-camera

configuration whereby the brute-force search for the surface orientation parameters

is broken down into two simpler 1D searches along two pairs of epipolar lines [20].

The work presented in this chapter belongs to the same category of techniques

which allow the matching window to locally deform according to the surface orien-

tation. We first formulate a theoretical model for local image deformation in both

the general case and the standard rectified camera geometry. Based on this model,

we then explore three methods of performing multi-dimensional correlation. The first

method naively builds the correlation table along all three dimensions of depth and

local tilt. The other two methods seek to increase computational efficiency by noting

redundant terms in the computation of correlation values and by using a classical

Levenberg-Marquardt minimization algorithm.

4.3 Local Image Deformation

We may approximate the local surface within an image window as a plane in 3D

space. Strictly speaking, the left and right images of a given plane are related by a

3 x 3 homography matrix, causing the local intensity patterns to be warped between

images. However, since the depth variation within the window is small, we may

approximate the exact image deformation by a simpler 2 x 2 affine transformation

matrix. Furthermore, we note from the epipolar geometry that any image deformation

must occur along corresponding epipolar lines. Hence, using the extrinsic and intrinsic

camera parameters, it is possible to model the local image deformation along only

a ID epipolar line instead of the 2D image plane. In this section, we present a

theoretical analysis of these deformations.

4.3.1 Cameras In Generic Positions

Fig. 4-la shows the general viewing geometry within the epipolar plane of a given

point P on the object surface. Without loss of generality, we set the 2D world origin

at the left camera center C1, and encode the relative position of the right camera C 2

Rnl R12 T1
by a rotation R =R and a translation T = 1. The matrices R and

R21 R22 T2
T may be obtained from extrinsic camera parameters. Now, notice that the epipolar

plane C1 C2P intersects the object surface along a curve. We approximate a short

segment along this curve PP' as a line, with P = (X, Z)T and P' = (X + AX, Z +

AZ)T . The left camera projects the 3D points P and P' onto the left epipolar line

at locations x and x + 6x respectively. From the perspective projection model, we

obtain

1 = X (4.1)
Z

X1 + 6i = f- (X + AX), (4.2)Z + AZ

where fi is the focal length of the left camera. Similarly, the right camera projects

the points P and P' onto the right epipolar line at coordinates x2 and x 2 + 6X2 , given

by

x2 2XI = f2(RX + R12Z +T (4.3)
X2 Z' Z' 1

x 2 + 6X2 = _ (X' + AX') (4.4)
Z' + AZ'

[Rn(X + AX) + R12(Z + AZ)+ T1], (4.5)
Z' + AZ'

where f2 is the focal length of the right camera, and (X', ZI)T and (X'+ AX', Z'+

AZI)T represent the respective coordinates of P and P' as viewed from the right

camera frame. Let the equation of the line segment PP' be Z = pX + r, such that

AZ = pAX. Since the depth variation within the short segment PP' is small, we can

further assume that AZ < Z and AZ' < Z'. Combining Eqs. 4.1-4.5 then yields

P =(Z)T

P'= (X+JAXZ+JZ)T

C 1 x T C2

P =(,Z)T

P' (-17= (XLIX Z+JZ)T

__ 1___ + X ',,N- +5.(b1 2 2 '2

T

(b)

Figure 4-1: (a) Generic camera geometry within the epipolar plane. PP' is a short
segment along the intersection of the epipolar plane with the object surface. (b)
Standard rectified geometry.

6x 1 =, AX
Z

- (R 11AX + R 12 AZ)

= (R + R12p)AX,

(4.6)

(4.7)

(4.8)

thereby giving the following relationship between 6x1 and 5x2

Sf2 Zox2 =-f1Z'(Rn1 + R12p)6x1. (4.9)

Eq. 4.11 represents the local image deformation between two windows centered

at x1 and x 2 in the left and right images respectively. A pixel at x1 + 6x 1 in the

left image window corresponds to the pixel x2 + 6x 2 in the right image window, for

a given depth Z and surface orientation p. By finding the best combination of Z

and p that maximizes the correlation between the two image windows, we may thus

simultaneously recover both the depth and surface orientation of the point P within

the epipolar plane. This forms the basis of multi-dimensional correlation.

4.3.2 Standard Geometry

Notice, however, that in the standard rectified geometry where the optical axes of the

two cameras are perpendicular to the baseline (Fig. 4-lb), Eq. 4.11 unfortunately

does not allow us to determine the surface orientation p. In this case, the relative

rotation is simply R = I and the two cameras are only displaced from each other by

the translation vector T. The depth coordinates Z and Z' are also equal. Hence, Eq.

4.11 reduces to

Jx 2 = f2x, (4.10)
fi

which only accounts for the scaling effect from the difference in focal lengths and

is clearly inadequate for our purposes. Nonetheless, our intuition tells us that some

degree of foreshortening is present even in the standard rectified geometry, especially

for large baselines. Hence, we revisit our earlier approximation that Z ~ Z + AZ and

Z' ~ Z'+ AZ' so as to derive the image deformation equation exactly. For simplicity,

we assume that fi = f2 = f and note that R 11 = 1, R 12 = 0 and Z = Z' under this

configuration. The ratio between 6x 1 and 6x 2 is then given by

Jx2 (X + AX + T)Z - (X + T)(Z + AZ) (4.11)
Jx1 (X +AX)Z - X(Z + AZ)

= 1 AZ (4.12)

= - . (4.13)

Therefore, we see that the exact local image deformation differs from Eq. 4.10 by

a term that depends on the baseline T. By recalling from the perspective projection

model that X = zx1 and substituting into Eq. 4.13, we further obtain
-f

6x 2 _T f p
Z= - - (4.14)

Hx1 Z f -p x1

Hence, in the neighborhood of a given pixel x1 in the left image, the local de-

formation around the corresponding pixel x2 in the right image may be determined

based on the depth Z and tilt p of the imaged point. More precisely, by noting that

disparity is inversely related to depth via the expression x2 -X = Z, we may rewrite

Eq. 4.14 as

x 2 + 6x 2 = (X1 + 6x 1) + .fX 1 + X1) (4.15)
(Z) f - px1

Eq. 4.15 explicitly expresses the relationship between the left image window (i.e.

the set of neighboring pixels {xi + 6xi}) and the corresponding (deformed) window

in the right image {x2 + 6x 2}. Each pixel in the image window is mapped to the same

(Z, p) location. In particular, when p = 0 (i.e. the surface is fronto-parallel), Eq.

4.15 indicates that all points within the window will have a constant disparity z,

as expected. Also note that in the rectified camera geometry, the epipolar lines are

horizontal scanlines, and thus x1 and X2 are the pixel coordinates along the x-axis.

Using Eq. 4.15, the best depth and surface orientation may then be found from the

peak of the resulting multi-dimensional correlation table in Z and p.

4.3.3 Multiple Views

So far, we have only described the local image deformation within the epipolar plane,

allowing us to obtain the depth and surface orientation within this plane. A minimum

of three calibrated cameras spaced in different epipolar planes must be used in order

to recover the same parameters in 3D space. First, for a given pixel in a reference

view, the corresponding pixels in the other images is calculated. For a range of candi-

date depths and surface orientations, the corresponding image windows are deformed

according to Eqs. 4.9 or 4.15. The correlation values from each stereo pair may

then be summed up (using the multi-baseline method described in Chap. 3), and the

depth estimate is obtained from the largest sum of correlation values. At this depth,

the best-matching surface orientations in each pairwise multi-dimensional correlation

table is found. Each surface orientation estimate corresponds to a vector tangential to

the object surface that lies in the respective epipolar plane. Finally, we may estimate

the local surface normal of the object by simply taking the cross-product of any two

tangential vectors.

4.4 Evaluation

For simplicity, we have chosen to implement the multi-dimensional correlation (MDC)

scheme using only two views in a standard rectified geometry. As such, we only

need to consider image deformations in the horizontal x-direction. To evaluate the

effectiveness of our method, we generated synthetic stereo pairs by simulating the

perspective projection of two parallel cameras. Both cameras have a simulated focal

length of 1000 pixels and are displaced from each other by 5 a.u. Based on the known

geometry of the synthetic scene, we may also obtain the ground truth depth maps

and surface orientation maps.

Fig. 4-2 shows a pair of synthetic images of a convex corner with flat sides. The

object has a depth range of 80-100 a.u., where the apex is the closest to the camera

origin. The sides are planes with a constant tilt of p = ±2 in the x- direction and

no tilt in the y- direction. This dataset enabled us to test the consistency of the

multi-dimensional correlation algorithm for different points with the same surface

tilt.

Fig. 4-3 shows another synthetic image pair of a convex parabolic surface, using

the same simulated cameras as before. The object has a depth range of 90-100 a.u.,

with its middle being closer to the camera center than the sides. The parabolic

dataset allowed us to test the algorithm on varying surface orientations within the

image.

In the rest of this chapter, we will explain and evaluate the three different imple-

mentations of multi-dimensional correlation mentioned previously, namely the basic

method, efficient method, and minimization approach.

(a) (b)

Figure 4-2: Left and right images of a simulated convex corner with flat sides. The
object has a depth range of 80-100 a.u. and the sides are flat planes with a constant
tilt of p = ±2 in the x- direction.

(a) (b)

Figure 4-3: Left and right images of a simulated convex parabolic surface. The object
has a depth range of 90-100 a.u. and is only tilted in the x- direction.

4.5 Basic Multi-Dimensional Correlation

The most straightforward method of performing multi-dimensional correlation is to

calculate the correlation value for every possible (Z, p) in the correlation table. Since

a search along multiple dimensions is computationally costly, we increase efficiency by

adopting a coarse-to-fine hierarchical approach. An initial depth estimate is obtained

by assuming that the surface is locally fronto-parallel and performing fixed window

correlation. We then build the correlation table by evaluating depth values within

±1 of the initial estimate and surface orientations p in the range of [-3, 3], at a user-

defined resolution of 0.1 in both dimensions. For each table entry, we select a square

or rectangular window around the current pixel in the left image and compute the

disparities (dX, dy) = (d, 0) in the corresponding right image window using the image

deformation equation (Eq. 4.15). Since the windows being compared are typically

of different shapes, we interpolate the right image at the calculated locations before

summing the correlation criterion over the window.

While a variety of correlation measures may be used, we have selected the error

correlation function [13] that was also used in Chap. 3, reproduced here for conve-

nience:

[Ii(x, y) + 2(x + d, y + dy) - II1 (x, y) - I2(x + d, y + dy)
zow, yEW,

S(x,y,dd) = Z I:1:[I(x, y) + 2(x + dx, y + dy)]
xGWx yEW,

(4.16)

The error correlation function efficiently measures the degree of similarity, while

also normalizing the values to lie within 0 and 1. Once all the entries of the MDC

table are filled, the resulting peak gives the most probable depth Z and local tilt p

for the current pixel of interest.

Although this basic implementation may be inefficient (typical processing times in

MATLAB are on the order of 10 seconds per pixel), it does allow us to easily visualize

the correlation table. From numerous trials, we have discovered that the accuracy of

the algorithm is fairly sensitive to the size of the support window. Fig. 4-4 shows

typical correlation tables obtained using window sizes of 5 x 5, 15 x 15 and 35 x 35

for the same pixel in the parabolic dataset. For small image windows, the correlation

table peak is not distinct nor accurate due to the lack of signal. Conversely, at large

window sizes, the local planar approximation begins to break down as the window

contains a curved surface, and the peak again becomes less discernible. While small

windows are generally ideal to avoid straddling depth discontinuities, we have found

larger window sizes to be necessary in order to obtain accurate depth and tilt values.

This is unfortunately due to the limited foreshortening effect in the standard rectified

geometry, such that substantial local image deformation is only present in larger

windows. Presumably, a verged stereo configuration will allow the use of smaller

windows, leading to greater robustness in correlation.

4.6 Efficient Multi-Dimensional Correlation

In the basic implementation of multi-dimensional correlation, the calculation of mul-

tiple entries in the correlation table involve the same pixel comparisons between the

left and right images. As such, a more efficient method would be to fill in all the

table entries corresponding to each pixel comparison made, instead.of building the

table entry by entry. Below we describe the methodology.

From fixed window correlation, we obtain an initial estimate of where the pixels in

the left image window would be in the right image. Due to local window deformation,

however, the actual points in the right image corresponding to those in the left image

window will likely deviate from this estimated location. We arbitrarily assume that

any local deformation occurs within a small neighborhood of ±1 pixel from the initial

correspondence, and interpolate the right image around this region to a finer resolu-

tion of 0.05 pixel. Each pixel in the left image window is then compared with points

in its corresponding fine grid. For every point-wise comparison, the pixel intensities

are multiplied together and the resulting value is added into every possible entry in

the MDC table for which the given comparison is made. These entries lie along some

09.

U(a

0.8

2 93
0 92.5

92

p 2 -4 91 915 Zc

5x5 window: Calculated Z =92.2, p = 0.7

(a)

096

2 9

09

088

0 . 92.5

-2 91.5 Z
-4 91

1 5x1 5 window: Calculated Z= 92.3DI 0

-4 91 C

35x35 window: Calculated Z = 92.4, p = 1.0

Figure 4-4: Typical MDC tables obtained using window sizes of 5 x 5, 15 x 15 and
35 x 35 pixels, as applied to the parabola dataset. Based on ground truth, the actual
depth is Z = 92.3 and the actual local tilt is p = 1.0. The small 5 x 5 window
produces a non-distinct and inaccurate peak, while the large 35 x 35 window also
begins to show signs of inaccuracy. An intermediate window size between 15 x 15 to
25 x 25 tends to perform well.

098

non-linear function Z = #(p), as obtained from Eq. 4.15 for a given point x1 + 6x 1 in

the left window being compared to another point X2 + 6x 2 in the right window. The

entries are also quantized according to the user-defined resolution of the table. This

process of multiplying pixel intensities and simultaneously adding into multiple table

entries is then repeated for every pixel within the left image window to populate the

MDC table. The table may then be searched for the peak value representing the most

likely values of depth Z and surface orientation p.

Essentially, this efficient method accumulates terms in the correlation sum as new

pixel comparisons are added, rather than summing over the regions being compared

as in standard correlation. Another way to think about the efficient method is that

each pointwise comparison is placed into bins in the MDC table lattice and the final

sum of elements in each bin gives the correlation value. In the limit where every

pointwise comparison for each table entry has been included, the efficient MDC table

is equivalent to that of the basic implementation.

The key advantage of the efficient method is that duplicate pixel comparisons may

be avoided, thus improving computational efficiency. The basic MDC scheme has a

computational intensity of O(m 2 RN), where m is the width of the image window, R

is the number of entries in any given dimension and N is the number of dimensions.

Conversely, the efficient method only requires a computational load of O(m 2Q), where

Q is the number of points in the fine interrogation grid for the image window, assuming

that the binning cost is negligible. As such, significant computational savings are

theoretically realizable.

However, by only considering each pixel comparison, the efficient method cannot

account for the characteristics of the entire matching window so as to normalize the

correlation table entries. In effect, the multiplication of pixel intensities is equivalent

to standard unnormalized cross-correlation. The lack of normalization allows certain

high intensity pixels to dominate in the correlation sum, thereby giving rise to in-

accuracies in the calculation of the table peak. This effect is best demonstrated by

comparing the normalized and unnormalized tables obtained using the basic imple-

mentation. As shown in Fig. 4-5, the unnormalized table produces a flat peak with a

62-

I- C
087-M

82 82

4 81 C 4 81 C

(a) (b)

Figure 4-5: Comparison of typical (a) unnormalized and (b) normalized MDC tables,
for the same pixel in the corner dataset and using a constant window size of 15 x 15.
For this example, the flat peak in the unnormalized table yields inaccurate values of
Z and p, as opposed to the accurate and well-defined peak in the normalized table.

range of possible depths and local tilts, instead of a single value with high statistical

significance. In contrast, the normalized table for the same pixel and window size

produces an accurate and well-defined peak. A rough way to achieve some degree of

normalization in the efficient method is to take the mean of all the correlation values

within a particular (Z, p) bin. However, without keeping track of the local means of

the matching windows, exact normalization cannot be achieved.

In practice, the shape of the efficient MDC table is also fairly sensitive to the

resolution at which the table values are binned. Too coarse a resolution in either

dimension (i.e. too few bins) causes the combined correlation sum of adjacent (Z, p)

entries to become lumped together, while too fine a resolution (i.e. too many bins)

prevents values from individual pixel comparisons from being meaningfully aggregated

into a single table entry. In our implementation, we have found that using the same

resolution as that at which the disparity and surface tilt were evaluated tends to work

well.

Fig. 4-6 shows a typical histogram of the number of pointwise comparisons belong-

ing to all (Z, p) bins. Each bin represents a particular combination of correspondences

between the left and right image windows, or alternatively, the locations at which the

non-linear functions Z = #(p) intersect. A high number of correspondences in a given

bin is analogous to using a larger image window, and thus the MDC value is taken to

be more reliable. As expected, along the p = 0 plane (i.e. flat window), equal numbers

of pointwise comparisons at found at different depths corresponding to the candidate

disparities sampled. This is equivalent to matching the left image window with the

undeformed right image window at the candidate disparity, and placing the corre-

lation sum at the appropriate table entry. Furthermore, we observe that the region

closest to the initial depth estimate and around small tilt values produces MDC values

that are most reliable, while the rest of the table contains too few correspondences

for meaningful statistical conclusions to be drawn. This is unavoidable because for a

given search range in the right image (in our case, +1 pixel), there are only limited

(Z, p) combinations such that every point in the left image window also appears in

the right image window. However, this observation has two key implications. First,

although efficient MDC minimizes the number of redundant pointwise comparisons

between the two images, it also performs a large number of comparisons that do not

yield reliable correlation values. After all, correlation is an area-based similarity mea-

sure, and individual pointwise comparisons alone are not useful. Ideally, we would

like to populate the entire correlation table with equally reliable measurements, as in

basic MDC. Second, since the efficient MDC table is heavily populated by correla-

tion values from only a few correspondences, some thresholding is required to remove

unreliable table entries. In our implementation, we require at least 50% of the left

image window to find correspondences in the right image search region before the

MDC entry is considered valid.

After thresholding the efficient MDC table, we obtain a sparse set of reliable MDC

values in the Z-p space, as shown in Fig. 4-7a. In this example, we use a 7 x 19 window

on the corner dataset. To fill in holes in the efficient MDC table, we may also fit a

surface over the reliable points, similar to that in Fig. 4-7b. From visual inspection,

the shape of the fitted efficient MDC function is similar to that from basic MDC

(Fig. 4-7c). However, due to the sparsity of the efficient MDC table, the shape of

the fitted curve is highly sensitive to the grid resolution and often incurs errors from

overfitting. Moreover, the efficient MDC table undergoes a further loss of resolution

after curve-fitting. For the example in Fig. 4-7, the peak of the fitted curve gives

140-

10

Figure 4-6: Typical histogram of the number of pointwise comparisons for each (Z, p)
bin. Notice that a higher number of correspondences are usually found at tilt values
and are thus more reliable, while the rest of the table is sparsely populated.

an estimate of Z = 87.8 and p = 1.8, while the ground truth value is Z = 88.1 and

p = 2.0.

A final note concerns the unexpectedly slow processing speed of the efficient MDC

method. Unfortunately, the pointwise comparisons and binning operations require a

large number of memory accesses, which is computationally intensive in MATLAB.

We leave a more efficient implementation in another programming environment as

future work.

In summary, we have described the pipeline to perform efficient MDC on a set

of images. While a theoretical analysis of the method predicts significant computa-

tional savings, our experiments have identified numerous tradeoffs in the reliability

of MDC values and the resolution of the resulting MDC table. A potentially better

implementation may be to build the MDC table entry-by-entry, but keep track of the

individual pointwise comparisons to populate the rest of the table. As each entry

is scanned, only the missing comparisons for the matching window points are made.

Such a method reduces the processing load at the expense of memory usage, since

each entry now stores both the pointwise correlation value as well as the location of

the points.

0.33 -

0.32 - -

() 0.31 - -

0.3

028

027 - -

02 - * *

2 89

P 1 87 07 0pz

(a)

032

03

22

023

0.27

22

p -1 87 Z
C

(b)

370

- 89

23 88.5

pz
87.55

0 87 C

(c)

Figure 4-7: Typical MDC tables for a 7 x 19 window applied to the corner dataset.

(a) Sparse point cloud representing the reliable values in the efficient MDC table

after thresholding. (b) Efficient MDC function obtained by fitting a surface over the

reliable points. (c) Basic (unnormalized) MDC table for the same pixel and window

size.

70

4.7 Numerical Minimization

In the third implementation of multi-dimensional correlation, we use a classical Levenberg-

Marquardt minimization technique to determine the peak of the correlation curve (or

more precisely, the minimum of the inverted correlation function). Again, we seek the

values of depth Z and surface tilt p that maximize the correlation between the left

and right image windows, as determined using Eq. 4.15. We initialize the numerical

minimization step using the initial disparity estimate computed by fixed window cor-

relation as the first component of the initialization vector, and a locally flat surface

orientation p = 0 for the second component. Assuming the correlation function is

locally well-behaved and unimodal, the output vector of the minimization technique

then gives the most probable depth Z and surface orientation p of the imaged surface.

The advantage of such a method is that not all entries of the MDC table have to be

calculated, thus significantly cutting down on processing time.

Fig. 4-8 shows the resulting depth map and surface orientation map obtained by

applying the MDC minimization approach to the corner dataset with a window size of

25 x 25. Indeed, by allowing the matching window to locally deform according to the

surface orientation, the depth and surface orientation of each pixel may be obtained

simultaneously and accurately. At this window size, 81.4% of surface orientations have

been recovered correctly, where a correct value is taken to have an absolute error of

less than 0.2. This result is promising, given the limited foreshortening effects and

lack of deformation signal in the standard camera geometry.

Figure 4-8: (a) Ground truth depth map and surface orientation map of corner
dataset. (b) Calculated depth map and surface orientation map by using the MDC
minimization approach. At a window size of 25 x 25, 81.4% of the surface orientations
have been recovered correctly.

Chapter 5

Randomized Stereo Matching

5.1 Introduction

Although the topic of stereo matching has been widely studied in computer vision,

most research has focused on improving its accuracy and robustness, rather than

processing speed. However, in certain real-time or data-intensive applications such

as medical imaging or Particle Image Velocimetry (PIV), a computationally efficient

block-matching method is desirable. This chapter presents a new algorithm that

uses randomized sampling to quickly find correspondences across multiple frames and

produce dense disparity maps.

The task of estimating a set of pixel-wise correspondences involves locating, for

each block in one image region, the closest match in another image region based on a

similarity measure. Conventional techniques typically carry out a brute-force search

of all blocks within a search window of the second image. In the spatial domain, this

is computationally expensive and scales as O(BWS) for images and blocks of size

S and B pixels, and a search window size of W pixels. Most of these comparisons,

however, are redundant as we are ultimately interested in only the best matching one.

Presumably, if we knew where to look, we could then narrow our search by focusing

on the regions with high matching probabilities.

The inherent problem of conventional stereo methods is that they only make deci-

sions locally and ignore the global structure of images. Marr and Poggio [21] propose

that stereo disparity maps should be continuous almost everywhere and have unique

values, since most scenes contain smooth and opaque surfaces, and discontinuities

only occur along object boundaries. The continuity assumption implies that dispar-

ity values across adjacent pixels are relatively consistent. Hence, we may reasonably

predict the disparity of a given pixel by referring to its neighbors' values, in so doing

improving the efficiency of stereo matching.

The question remains: how do we set an initial disparity estimate? Given no

prior information about the scene, at best we may randomly assign a disparity value

to each pixel. While any single random disparity value is likely to be wrong, a

small proportion of random assignments will also likely be correct, by virtue of the

large number of assignments. We may thus exploit the large number of image pixels

to obtain some accurate matches, and then use these as seeds to grow additional

matches.

Based on these observations, we propose an iterative, randomized algorithm to ef-

ficiently compute dense disparity maps. The algorithm starts from an initial disparity

estimate, which may be randomly assigned or obtained from prior information. In

each iteration, we first enforce the continuity assumption by updating each pixel with

the best disparity estimate in its neighborhood, and then randomly search around

the current disparity to refine the estimate. We present a theoretical analysis and

experimental results to demonstrate the convergence properties of this algorithm.

Furthermore, since the randomized algorithm only considers a subset of all candidate

blocks when searching for matches, it is expected to take less time and memory than

traditional methods. We show empirically the potential savings in computation time

by using our algorithm.

5.2 Related Work

Fast block-matching algorithms have found interest not only in the field of stereo

matching, but also in the video compression community, where active research has

been done over the last two decades to devise video coding standards. In video

compression, block-matching algorithms are used to estimate the motion of a block

between the current frame and the previous frame. Given that typically only some

fraction of a video changes from frame to frame, we may encode and transmit a

motion-compensated- frame consisting of blocks from the previous frame, thereby

reducing the number of bits transmitted and eliminating the spatial and temporal

redundancy in video sequences.

To this end, the most straightforward approach is to exhaustively compare each

block in the current frame with all blocks within a fixed search window of the previous

frame, known as a Full Search (FS). The best match is determined by minimizing

a cost function such as SSD or SAD. While FS guarantees an optimal compression

quality, it is computationally intensive and thus unsuitable to deal with large amounts

of video data. For instance, a 15 x 15 search window requires 225 block comparisons.

As such, a plethora of sub-optimal algorithms have been designed to achieve a high

compression quality in as few computation steps as possible.

An early attempt at fast block-matching is the Three Step Search (TSS) [22],

shown in Fig. 5-1. Instead of searching every location within a search window, TSS

searches at the central location (0, 0) and the eight locations spaced around it at a

step size of 4. From these nine locations, the algorithm selects the point with the

lowest cost as the new search origin, at the same time halving the step size to 2.

It repeats the process once more until the step size is 1 and selects the lowest cost

location as the best match. Since TSS only makes a maximum of 25 comparisons, it

requires 9 times fewer computation steps than FS, but trades off matching accuracy

for efficiency. An enhanced version of TSS, known as the New Three Step Search

(NTSS) [23], includes eight more blocks closer to the central region for comparison,

so as to account for small motions near the center.

In the same vein as NTSS, the Four Step Search (FSS) [24] searches sequentially

but with a smaller and fixed step size of 2 for the first three steps. At the fourth

step, the step size is reduced to 1. At any stage, if the lowest cost is found at the

central point, the algorithm transitions to the fourth step to quickly end the search.

Furthermore, the shape of a search pattern may be changed from square to diamond,

A L

T
A L

t 'r

(a) (b)

Figure 5-1: (a) Typical Three Step Search (TSS) procedure. (b) Typical Diamond

Search procedure. The algorithm searches in five search steps using a diamond pattern

of step size 2, except for the last step where the step size is reduced to 1.

and the limit on the number of steps may also be lifted to allow the global minimum

to be found accurately [25}. Fig. 5-1 depicts the procedure for such a Diamond Search

(DS).

While the above methods lead to considerable computational savings by reducing

the number of block comparisons made, they do not exploit the observation that the

motions of adjacent blocks are highly correlated (similar to our continuity assumption

for stereo disparities). The class of algorithms that most resembles our randomized

algorithm in this aspect is the Adaptive Rood Pattern Search (ARPS) [26]. ARPS

seeks to predict the motion of a block by referring to its surrounding blocks across

space and time. Besides searching at four equally-spaced locations about the center

point of the current block, ARPS also searches at the location given by the motion

vector of its left neighbor block. Because the likelihood of finding the correct match at

the sampled locations is high, a small pattern search is sufficient to quickly complete

the remaining search.

Unfortunately, all these fast block-matching algorithms implicitly assume that the

cost function surface is unimodal, such that the costs at each search location increase

monotonically from the global minimum. Hence, they run the risk of being trapped in

local minima over a long search path, particularly when the image contains periodic

-~ ---- ----- A

K~ ~ IL- -- - -

patterns. In the case of ARPS, such errors may even be propagated to other parts of

the image or to other frames. We thus opt for an iterative scheme that casts a wide

search net during each iteration so as to escape from local minima. We also reduce

propagation error by refining the disparity estimates over several iterations.

Finally, we note that the randomized algorithm presented here bears great simi-

larity to the work by Barnes et al. on PatchMatch [27]. While the theoretical foun-

dations are mostly identical, Barnes et al. focus on the algorithm's applicability to

image editing, reshuffling and retargeting. In this chapter, however, we demonstrate

the utility of the algorithm in a stereo matching framework.

5.3 Overview of Algorithm

In this section, we give an overview of the randomized stereo matching algorithm.

Unlike other local window-based methods, the algorithm is cooperative, because it

aggregates information from neighboring pixels in an interdependent manner so as

to search more efficiently. Matching is also done at random, keeping in mind that

using a sufficiently large number of random disparity assignments ensures that some

of them would be accurate.

The algorithm comprises three main stages: Initialization, Propagation and Search.

Each step is depicted in Fig. 5-2 and described in greater detail below.

5.3.1 Initialization

First, we define a disparity field u(x, y), where u = (u, v) is the displacement between

a block centered at (x, y) in image I1 and its closest match in image '2. The disparity

field u(x, y) is an array of the same size as I1. We initialize u(x, y) by independently

assigning uniformly distributed values to each (x, y) coordinate. The random dis-

placements span a given search parameter, but do not exceed the boundaries of I2.

Once we have initialized the disparity field, we may store and use the same values for

multiple frames, instead of recomputing a new random prior for every stereo pair.

Figure 5-2: Stages of the randomized stereo matching algorithm: (a) Pixels are ini-
tially assigned random disparities; (b) Good matches (blue) are disseminated to neigh-
bors (red); (c) Random local search to improve estimate.

To speed up convergence, we may also use prior knowledge of the scene or cam-

era geometry to limit the range of disparities and impose ordering constraints. For

instance, for a rectified left-right stereo pair, the horizontal disparity field for the left

image may be confined to negative values, while the vertical disparity field may be

set to zero assuming no image distortion.

Furthermore, we may use a hierarchical coarse-to-fine pyramid approach to obtain

a more accurate initial disparity field. In our implementation, we use three pyramid

levels, where the image at level 1 is obtained by downsampling the image at level 1 -1

by a factor of 0.5. Coarse block-matching is first performed on low-resolution images

using a fixed block size and a search parameter of 2-w, where w is the desired search

width at the original resolution. The estimated disparity field from the top level of

the pyramid is then used to initialize a narrower search at the next finer level, after

multiplying and resizing by a factor of 2. Such a hierarchical procedure allows us to

save processing time by performing most of the refinement at coarser and faster levels

and reducing the number of iterations at finer and slower levels.

5.3.2 Iteration

After initialization, we iteratively update the disparity field. In each iteration, we

cycle through every point in the disparity field, first propagating good matches from

adjacent pixels and then carrying out a random search, before proceeding onto the

next pixel.

5.3.2.1 Propagation

Since adjacent pixels belonging to the same object surface are likely to share similar

disparity values, we seek to improve the current pixel's disparity estimate by referring

to the neighbors immediately above and to its left. We thus compare the block

at (x, y) with interrogation blocks centered at its current disparity u(x, y), as well

as candidate disparities u(x - 1, y) and u(x, y - 1) for the left and top neighbors

respectively. Let the degree of similarity between the block at (x, y) in image I1

and the block at (x, y) + u in image 12 be measured by a cost function C(u). We

then replace the current pixel's disparity with the value that minimizes C(u) for the

candidate disparities. Mathematically, this disparity update may be expressed as:

u(x, y) = arg min{C(u(x, y)), C(u(x - 1, y)), C(u(x, y - 1))}. (5.1)

Care is taken to ensure that the candidate disparities taken from surrounding

pixels do not exceed the boundaries of I2. For pixels on the edges of image 1 which

do not have neighbors to the left or above, we also modify Eq. 5.4 to make use of

the best available information. Through the process of propagation, if the disparity

at (x, y) is found correctly, then all pixels below and to the right of (x, y) lying in

the same contiguous region will also converge to the correct value within a single

iteration. The search is therefore highly efficient because it skips the computation of

other less probable matches.

Furthermore, to allow good disparity values to spread to all parts of the image,

we alternate propagation directions between iterations. On odd iterations, we scan

through the disparity field from left to right, top to bottom, thereby propagating

information downwards and to the right using Eq. 5.1. Conversely, on even iterations,

we scan in reverse order from right to left, bottom to top, so as to propagate upwards

and to the left. Consequently, the disparity update equation for even iterations is

rewritten as:

u(x, y) = arg min{C(u(x, y)), C(u(x + 1, y)), C(u(x, y + 1))}. (5.2)

5.3.2.2 Search

Next, we search around the current best disparity to further improve our estimate.

This search may be carried out sequentially at equally spaced points from the current

disparity vector, resembling the regular pattern of DS, TSS or FSS. However, following

the implementation of [27}, we only search at a small number of randomly spaced

points to increase efficiency. While a single random search pattern is unlikely to

track the correct disparity by itself, we again use the fact that many random searches

across neighboring pixels will corroborate with each other through the process of

propagation. For a given pixel at (x, y) with current disparity u(x, y), the set of

disparities for random search U = {ui} may be expressed as:

uw = u(X, Y) + a/ , (5.3)

where wx and wy are the maximum search radii in the x and y directions, and rx

and ry are i.i.d. uniform random variables in the interval [-1, 1]. a is a scaling factor

that controls the size of the search window between candidate disparities; typically

a is set at 0.5. We populate {ui} for i = 0, 1, 2, ... until the current search width is

less than 1 pixel. Note also that the search window should be bounded by the image

size of '2.

After computing the cost values at each candidate disparity, the new disparity of

pixel p is selected in a Winner-Takes-All (WTA) fashion, as given by

u(x, y) = arg min{C(ui) Jui E U}. (5.4)

To further increase processing speed and avoid spurious matches over long search

distances, the search radii, wx and wy, may be limited by the user based on prior

knowledge of the images being compared. An adaptive scheme may also be used,

where the search range for a given pixel is proportional to the variance of its neigh-

boring pixels. The intuition for such an adaptive search is to widen the search window

in earlier iterations when the disparity field is ill-defined, and narrow the search sub-

sequently when the disparity field becomes more accurate. Nonetheless, including an

adaptive search width introduces additional processing complexities which may not

warrant its usage.

5.3.2.3 Similarity Measure

Since our randomized algorithm is inherently a local technique, we may employ any

arbitrary window-based error metric C(u) to compare the two blocks in images I1

and 12. As described in Chap. 2, a common similarity measure is the Sum of Ab-

solute Differences (SAD). Given a template block Ii(q) consisting of pixels in the

neighborhood of p = (x, y), the SAD cost function is given by

CSAD(U) -1 1 2(9 + u) - Il(q)|, (5.5)

where u is the displacement of the block in 12. N, is the b. x by rectangular neigh-

borhood centered at p, where bx and by are the block width and height respectively.

Minimizing the SAD matching cost then gives the disparity of pixel p. While the

SAD cost function is relatively robust to outliers, it unfortunately assumes that all

pixels within the support window are at the same depth as it implicitly weights all of

them equally. When a block straddles a depth discontinuity, the SAD metric tends to

give an inaccurate disparity since neighboring pixels at different depths bring about

matching ambiguity. As illustrated in Fig. 5-3, the effect is a rounding of corners and

edges, which becomes more pronounced as the block size increases.

To overcome this problem, we use the Locally Adaptive Support Weight (LASW)

approach proposed by Yoon and Kweon [9]. Instead of using square windows of

(a) (b)

Figure 5-3: Dense disparity map for a synthetic image [9}. (a) Left image. (b) Ground
truth. (c) Disparity map using naive SAD. Notice that the corners are rounded
as the uniformly weighted support window smooths over depth discontinuities. (d)
Disparity map using locally adaptive support window. In this case, corners and edges
are preserved.

uniform weights, each pixel in the support window affects the matching cost differently

depending on their color similarity and proximity to the pixel under consideration.

The idea is that pixels which are close to the reference pixel and of similar color

will likely be at the same depth and should thus be weighted more heavily in the

cost aggregation, while the remaining pixels should have less effect. Consequently,

arbitrarily-shaped depth continuities are better preserved, as illustrated in Fig. 5-3d.

Formally, the local support window is associated with a spatially varying weighting

function w(p, q) that is a combination of two Laplacian kernels, viz.

w(p, q) = exp (-(q - I(p)I exp (j - p). (5.6)

The first term of the expression defines the influence of neighboring pixels q ac-

cording to their color difference from the center pixel p, where ||I(q) - 1(p) repre-

sents the Euclidean distance between two pixel colors I(q) and 1(p) and the parameter

Ac controls the level of influence. Although Yoon and Kweon first convert colors to

CIELab space in order to enhance any perceptual color difference, we measure the

Euclidean distance in RGB space to simplify matters. The second term defines the

influence of neighboring pixels based on their spatial distance from p, as controlled by

the parameter Ad. The weighting function w(p, q) is zero outside of the neighborhood

Np.

(C) (d)

Reference Target

Figure 5-4: Locally adaptive support weight computation [9]. The top row shows
the reference and target blocks, and the bottom row shows the respective support
weights computed using Eq.5.6. The blue square denotes the reference pixel. Pixels
that are similar in color and close to the reference pixel have larger support weights
and appear brighter. After computing the support weights for each block, we combine
them by pixel-wise multiplication to aggregate support only from similar neighboring
pixels.

After applying the local weighting function separately to both the reference block

in I1 and the target block in 12 (yielding wi and w2 respectively), the cost function

for pixel p becomes a weighted average of SAD costs in the support window:

CLASW(U) = 1 E wi(p, q)w2 (p + u, q + u) 12(q + u) - Ii(q)|. (5.7)
qENy

The normalization term K is defined as follows:

K = 1 wi(p, q)w2(p + u, q+ u), (5.8)
qENp

and ensures that all the weights sum to unity. Interestingly, the operation in Eq.

5.7 is similar to applying a bilateral filter jointly to the reference and target blocks

before comparing them. A graphical depiction of this procedure is shown in Fig. 5-4.

Combined

5.3.3 Termination

The randomized algorithm terminates after the disparity field has converged. While

various methods may be used to determine convergence and adapt the number of

iterations accordingly, we show in Sect. 5.4 that the expected number of iterations

to convergence remains constant for large image resolutions. In practice, we use 4-5

iterations. In the hierarchical pyramid scheme, we set the number of iterations at

each level 1 as 21+1, so that coarser levels (large 1) use more iterations than finer and

slower levels (small 1)

5.4 Theoretical Analysis

In this section, we present the theoretical justifications for our algorithm. From a

probabilistic assessment, we shall show that random initialization often assigns at

least one correct disparity, and that the disparity field quickly converges to the exact

solution within a few iterations. We will also discuss the potential computational

savings of our algorithm relative to other methods.

5.4.1 Random Initialization

Consider two images I1 and '2, each of size S pixels. Our task is to find, for every

pixel in 11, the best matching pixel in '2 within a search window of size W pixels.

As described in Sect. 5.3.1, the initialization procedure assigns each pixel in Iiwith a

random disparity u(x, y). The probability of a given pixel having the right disparity

on the initial assignment is extremely small (i.e. -I). However, the probability that

all the pixels in I1 are assigned a wrong disparity also becomes exponentially smaller

with increasing image size (i.e. (1 - y)S). Hence, the chance of at least one pixel

in I1 having the right disparity is relatively high (i.e. 1 - (1 - #)S). Let the ratio

between the size of the search window and image size be #3 = . Then in the limit

of large S, the probability of at least one pixel disparity being correctly assigned is

approximately 1 - exp(-j). As # tends to 0 (i.e. the window where the match is

guaranteed to be found is much smaller than the image), this probability naturally

goes to 1. Conversely, as 3 tends to 1, this probability goes to 1 - . Therefore,

even in the worst case when the search window is as large as the image, our random

initialization still has at least 63% chance of producing a correct match prior to any

iterative refinement.

5.4.2 Convergence

Now, we consider the likelihood of convergence at each iteration. Suppose that after

initialization, a contiguous region of size R pixels has yet to converge and its pixels

were all assigned incorrect disparities. Our analysis is simplified by making three

observations. First, we may think of each random search iteration as consisting of a

new random disparity assignment within the maximum search window size W, as well

as a series of dense local searches around the current disparity u(x, y). Second, we

may also treat a given disparity as correct if it falls within a neighborhood of Q pixels

from the actual disparity, since the dense local searches will very likely detect the

correct match in one or two iterations. Lastly, we note that once a single pixel within

the region of interest has been correctly matched, then all R pixels will also rapidly

converge to their correct disparities due to propagation. Therefore, our criteria for

convergence is when at least one pixel in the region has been assigned an almost

correct disparity within an error margin of Q pixels.

Right after initialization, the probability of convergence prior to iteration is

p 1- (1-)R. (5.9)
W

The probability of convergence at each subsequent iteration is also p, based on our

first observation. Since the random search iterations are independent, the probability

of the region not converging on iterations 0, 1, 2, . .. , n -1 but converging on iteration

t is given by p(1 - p)". In other words, the number of iterations for convergence

belongs to a geometric distribution, with expected value E(n), viz.

1 Q -E(n)= - 1 = 1-(1- -)R -1 (5.10)
p [WJ

Let the ratio between the size of the region of interest and the image size be -y = .S.

For large image sizes, Eq. 5.10 may then be rewritten as

E(n) = 1 - (1 -)rs -1 (5.11)

lim E(n) = 1 - exp(- Q) -1 (5.12)

Taking the Taylor series expansion of Eq. 5.12 for small -y/, we obtain

lim E(n) = (W)~1 - 1 = 1. (5.13)
S-- 3 QR

Hence, the expected number of iterations for convergence is constant for a small

region relative to the search window (i.e. small y/3) and a large image size S. This

result is significant because it allows us to fix the number of iterations n for large

images. Typical values for the search window size W, feature size R and neighboring

region Q may be 50 x 50, 3 x 3 and 10 x 10 pixels respectively. For this hypothetical

case, Eq. 5.13 estimates convergence within about 2 iterations, not including a few

additional iterations required for propagation and refinement. In practice, we have

found that our algorithm almost fully converges after n = 4 iterations, even at sub-

Megapixel image resolutions.

5.4.3 Computational Complexity

In this section, we compare the computational complexity of randomized matching to

other methods so as to demonstrate its efficiency. Suppose we want to perform stereo

matching on two images of size s x s pixels, using a block size of b x b pixels and a

pre-defined search window of size w x w pixels. Assuming that initialization carries

little computational burden, we only consider the computational load of iterative

refinement. First, during propagation, we update each pixel with the best disparity

estimate among two of its neighbors and itself. This step involves 3b2 multiplications

for each pixel. Next, we do a series of m random searches at fractional multiples

of the search radius ! from the current disparity, where m= log(w/2) This
2 L loge a

step involves another mb2 multiplications for each pixel. We repeat this process for

every pixel in the reference image. Thus a single iteration involves O((m + 3)b 2 S2)

operations. Assuming the algorithm converges (or terminates) after n iterations, in

total we require a computational complexity of O(n(m+3)b2s 2) for randomized stereo

matching.

In contrast, conventional stereo matching techniques usually involve a full search

in the spatial domain and have a computational complexity of O(w 2b2 S2). Since

the search window size w2 is typically large (w2 > n(m + 3)), randomized stereo

matching is thus far superior to spatial block-matching in terms of efficiency, barring

the computational overhead in random number generation and memory reads. For

instance, a randomized algorithm using n = 4 iterations and m = 4 random samples

per iteration can theoretically achieve a 90-fold increase in processing speed over a

full search with a typical search parameter of w = 50.

Furthermore, it is worth noting that the computational complexity of the ran-

domized algorithm does not depend on the size of the search window (up to a first

approximation). This allows the randomized algorithm to efficiently measure large

displacements in both horizontal and vertical directions, making it well suited for

wide-baseline stereo matching and PIV applications requiring high correlation speeds.

Now, we consider another common method of stereo matching using spectral cor-

relation. Correlation may be implemented efficiently in the Fourier domain by multi-

plying the 2D Fast Fourier Transform (FFT) of the search window with the complex

conjugate of the 2D FFT of the block, before taking the inverse transform. The peak of

the resulting correlation table then corresponds to the best disparity estimate. Spec-

tral correlation is known to have a computational complexity of 0(4w2 log w+w 2) per

pixel, or O(s 2 W2 (4 log w + 1)) for the whole image. Hence, the randomized algorithm

is faster than FFT correlation if n(m + 3)b 2 < W2 (4log w + 1). Again, for a large

search parameter w and a small block height b, randomized stereo matching results

in significant computational savings.

5.5 Results

To demonstrate the effectiveness of the randomized algorithm, we have applied it

to several real and synthetic images in MATLAB. For comparison, we have also

implemented a conventional full search algorithm using the adaptively weighted SAD

cost function. Experimental results for the algorithm's accuracy, convergence and

processing time are presented below.

5.5.1 Synthetic Random Dot Images

Figs. 5-5 and 5-6 show the synthetic random dot image pairs generated to evaluate

the algorithm, along with the corresponding disparity maps for the reference view.

Each image has a size of 200 x 200 pixels and consists of uniformly distributed random

noise on the interval [0, 1]. In the first dataset (called synthetici), we shift portions

of the reference image by up to 20 pixels left and right to generate the second image.

As seen from the checkerboard pattern in the disparity map, small square regions

were assigned large disparities in opposite directions to test if the algorithm could

effectively handle closely spaced discontinuities. A periodic sinusoidal pattern with a

linear offset was also inserted into the image to make it difficult for the randomized

algorithm to find the true global minimum. In the second dataset (called synthetic2),

we simulate a tilted plane imaged by two cameras with parallel optical axes, where

the left side of the reference image is closer to the image plane than the right side. In

this simple stereo configuration, corresponding points lie on horizontal epipolar lines.

Hence, to generate the right image, we simply shift each column of the reference

image by the calculated subpixel disparity using Fourier-based translation and sum

the shifted columns. Note also that the synthetic2 dataset is a subset of the multi-

image dataset used in Chap. 3.

We ran both the randomized and full-search algorithms on the two synthetic

(a) (b)

Figure 5-5: Image dataset synthetici, consisting of shifted rectangular blocks. (a)
Reference (left) image. (b) Right image. (c) Ground truth disparity map. Brighter
regions have larger disparities (positive to the right), and occluded areas are marked
in black.

(a) (b) (c)

Figure 5-6: Image dataset synthetic2 of a simulated tilted plane. (a) Reference (left)
image. (b) Right image. (c) Ground truth disparity map. All pixels have negative
disparity values (i.e. shifted left), but brighter regions have less negative disparities.
Occluded areas are marked in black.

(a) Initial (b) 1 iteration

Figure 5-7: Convergence of randomized algorithm. (a) Initial random disparity field,
with brightness indicating disparity values assigned to each pixel (positive to the
right). (b) End of first iteration. Notice that the top left portions of homogeneous
regions usually have incorrect disparities, until a correct seed causes the rest of the
region below and to the right to be filled with the correct values. (c) Two iterations
completed. The opposite propagation directions eliminate incorrect disparities in
coherent regions. (d) By the end of iteration 5, almost all the pixels have stopped
changing values, except for occluded areas which are inherently unstable due to the
lack of matching correspondences.

datasets, using a block size of 7 x 7, search window radius w; = 25, and adap-

tive support weight parameters Ac = 0.3 and Ad = 3.5 (radius of block). To speed

up processing, we do not search in the y-direction (i.e. wy = 0), noting that the

images are already rectified and any disparity vector only has a x-component (i.e.

u(x, y) = (dr, 0)). All disparity maps presented henceforth thus depict only horizon-

tal displacements.

Fig. 5-7 illustrates the convergence of the randomized algorithm over 5 iterations,

as applied to the synthetici dataset. At iteration 0, the initial disparity field is fully

random. However, even by the end of the first and second iterations, good disparity

matches have been propagated throughout the image. After 5 iterations, almost all

the pixels have stopped changing disparity values, attesting to the stability and rapid

convergence of the randomized algorithm.

In Fig. 5-8, we compare the disparity maps obtained by randomized search (after

4 iterations) and full search with the ground truth for the synthetici dataset. Due to

the usage of locally adaptive support windows, the disparity maps for both the ran-

domized and full search algorithms are very accurate for unoccluded regions. Depth

discontinuities are preserved well and the corners and edges of the shifted rectangular

(c) 2 iterations (d) 5 iterations

portions remain sharply defined in the disparity map. Nonetheless, some errors do

occur on the edges of discontinuous regions, partly due to the highly textured nature

of the random-dot images. Paradoxically in highly textured regions, the amount of

aggregated support for each pixel is reduced as immediately adjacent pixels may be

of dissimilar colors. Hence, the locally adaptive similarity measure may produce false

matches due to insufficient signal. Experimentally, we have also observed this erro-

neous effect when applying adaptively weighted support windows to the synthetic2

dataset. For this reason, we instead use the regular SAD cost function for the syn-

thetic2 dataset, which produces clean disparity maps correct to pixel-wise resolution,

as shown in Fig. 5-9.

More importantly, we observe that the randomized algorithm has converged to

the exact solution obtained by full search after a small number of iterations. In fact,

for the synthetic2 dataset, the disparity maps between randomized search and full

search are exactly identical. For the synthetici dataset, homogeneous regions in the

checkerboard disparity pattern were able to arrive at the correct disparity values, in

spite of the lower probability of a correct seed occuring within the smaller regions.

Moreover, the randomized algorithm could detect the correct global minimum for

the sinusoidal pattern without falling into local minima along its search path, thus

demonstrating the robustness of random search.

Having seen an illustration of the randomized algorithm's convergence, we now

attempt to quantify its convergence rate using the percentage of correct disparities

relative to the ground truth as an approximate metric. Intuitively, a low percentage

across multiple iterations indicates poor convergence, while a value close to that of

the full search indicates nearly complete convergence. Fig. 5-10 shows the percentage

of correct disparities over several iterations for both the synthetici and synthetic2

datasets. A correct disparity is defined as having an absolute error of less than 1,

and occluded regions are discounted in the calculation of statistics. Moreover, the

percentages are averaged over 3 trials to minimize statistical anomalies. As expected,

the randomized algorithm is least accurate after the first iteration. However, it is

worth noting that at the beginning of iteration 1, only 6.5 percent of all disparities

(a) (b)

Figure 5-8: Results for synthetici dataset. (a) Ground truth.
produced by randomized algorithm at the end of 4 iterations.
obtained from full search.

(b) Disparity map
(c) Disparity map

(a) (b)

Figure 5-9: Results for synthetic2 dataset. (a) Ground truth.
produced by randomized algorithm at the end of 4 iterations.
obtained from full search.

(b)

(c)

Disparity map
Disparity map

were correctly assigned on average. Thus it is impressive that the algorithm could

quickly achieve a high accuracy of at least 98 percent at such an early stage. The-

oretically, the randomized algorithm attains the same accuracy as the full search in

the limit of having randomly searched all possible disparity values. For the synthetic2

dataset, the algorithm produces correct disparities for the entire image from the end

of the second iteration onwards. Interestingly however, for the synthetici dataset,

the randomized algorithm yields a higher percentage of correct disparities than the

full search in the second iteration before gradually declining to the same accuracy

in subsequent iterations. This is due to the randomized algorithm landing in local

minima that coincidentally correspond to the correct disparity, and not because of

any additional accuracy afforded by random search. Regardless of the search method

used, the final accuracy is limited by the discriminative power of the chosen similarity

measure.

Based on our insights from Figs. 5-7 and 5-10, it is clear that the randomized

algorithm converges quickly for synthetic datasets within a small number of iterations.

Hence, we have empirically verified our theoretical predictions for convergence, as

described in Sect. 5.4.2.

5.5.2 Real Images

We further evaluated the performance of the randomized algorithm using the Middle-

bury stereo datasets, which are commonly used to compare different stereo techniques

[1]. We selected two datasets, named Tsukuba and Sawtooth, as shown in Figs. 5-11

and 5-12 together with their ground truth disparity maps. In running our algorithms

on the real image datasets, we used a block size of 25 x 25, search radii w, = 25 and

and w, = 0, and adaptive support weight parameters Ac = 0.3 and Ad = 12.5 (radius

of block).

Fig. 5-13 illustrates the convergence of the randomized algorithm over 5 iterations

for the Tsukuba dataset. As before, the algorithm quickly transitions from an initial

random disparity field to an accurate and stable version. Such rapid convergence

makes the algorithm useful for processing real images.

100

99.8-

99.6-

1 99.4-

L 99.2--

C, 99

98.8.-
0

98.6

98.4-

98.2

98 I

0 1 2 3 4 5 6
Iteration Number

(a)

99.8-

.! 99.6-

99.4

(D

98.8--

98.6 --

98.4-

98.2'
0 1 2 3 4 5 6

Iteration Number

(b)

Figure 5-10: Illustration of convergence rate. (a) Percentage of correct disparities
over 6 iterations for (a) the synthetic1 dataset and (b) the synthetic2 dataset, rep-
resented in blue solid lines. The green dotted lines denote the accuracy of the full
search method, which the randomized algorithm should converge to in the limit. The
percentages of correct disparities are averaged over three trials and do not account
for occluded regions.

(a) (b)

Figure 5-11: Real image dataset Tsukuba. (a) Reference (left) image. (b) Right
image. (c) Ground truth disparity map, with bright regions representing positive
disparities (to the right).

(a) (b) (c)

Figure 5-12: Real image dataset Sawtooth. (a) Reference (left) image. (b) Right
image. (c) Ground truth disparity map. Note that the creators of this dataset use
brighter regions to denote larger disparities to the left.

(a) Initial (b) 1 iteration

(c) 2 iterations (d) 5 iterations

Figure 5-13: Convergence of randomized algorithm for tsukuba dataset. (a) Initial
random disparity field. (b) End of first iteration. Note that majority of disparity
values have already been found accurately. (c) End of second iteration. (d) After 5
iterations, the disparity field has converged.

Figs. 5-14 and 5-15 show matching results from the randomized algorithm (after 4

iterations) and full search for the Tsukuba and Sawtooth datasets respectively. The use

of locally adaptive support windows works especially well for images of real scenes as

there is usually sufficient aggregated support for each pixel compared to the synthetic

datasets. In both datasets, the locally adaptive similarity measure produces accurate

results at the depth discontinuities as well as in coherent regions. In particular, for

the Tsukuba dataset, disparity values for narrow objects, such as the lamp stem and

the tripod, are found correctly, and for the Sawtooth dataset, the sharp corners and

edges in the foreground are preserved and not rounded in spite of the large block size.

However, errors are still present especially in textureless regions (e.g. the gray back-

wall of the Tsukuba dataset), along occluding boundaries and at the image borders

where points may not be visible to both cameras.

Furthermore, we note from Figs. 5-14 and 5-15 that the disparity maps from the

randomized algorithm have converged to the exact solution produced by full search.

Again, we quantify this convergence by measuring the percentage of correct disparities

relative to ground truth during each iteration. As before, a correct disparity has an

absolute error of less than 1, and the percentages for each iteration are averaged over

3 trials. However, for real datasets, we include occluded pixels in computing the

disparity errors as occluded regions are not marked on the ground truth disparity

maps, thus resulting in slightly lower accuracies. Nonetheless, in these comparisons,

the rate of convergence is of greater interest than the actual performance of the

chosen similarity measure. We should expect the randomized algorithm to eventually

converge to the same accuracy as that of the full search, given enough iterations.

Fig. 5-16 shows the percentage of correct disparities over several iterations for the

Tsukuba dataset. At first glance, it might appear that the randomized algorithm has

yielded the same disparity field as full search by the end of the first iteration, judging

by the similar percentages of correct disparities. However, a closer inspection of the

error map between the full search solution and the randomized algorithm output

after 1 iteration reveals substantial errors. While the percentage of correct disparities

remains relatively constant over several iterations, it is not immediately clear how the

(a) (b)

Figure 5-14: Results for Tsukuba dataset. (a) Ground truth. (b) Disparity map
produced by randomized algorithm at the end of 4 iterations. (c) Disparity map
obtained from full search. Note that in (b) and (c), negative values and values above
a threshold of 20 have been removed from the disparity maps.

(a) (b) (c)

Figure 5-15: Results for Sawtooth dataset. (a) Ground truth. (b) Disparity map
produced by randomized algorithm at the end of 4 iterations. (c) Disparity map
obtained from full search. Note that in (b) and (c), negative values and values above
a threshold of 20 have been removed from the disparity maps.

94

93.8-

93.6-

2 93.4

093.2 Error after
.2 1 iteration
o 93
E92.8-

92.6

92.4-

92.2

0 2 3 4 5 6 Error after
Iteration Number 5 iterations

(a) (b)

Figure 5-16: Illustration of convergence rate for the Tsukuba dataset. (a) Percentage
of correct disparities over 6 iterations. The blue line represents the randomized al-
gorithm, while the green line denotes the accuracy of the exact full search solution.
(b) Error maps between the full search and randomized outputs after 1 iteration and
5 iterations. While the percentage of correct disparities seems fairly constant over

6 iterations, the error map after 1 iteration reveals incomplete convergence. After 5
iterations, however, most errors have been eliminated and the randomized algorithm
almost fully converges.

distribution of errors changes throughout. By the fifth iteration, however, the error

map is almost empty, indicating that the randomized algorithm has indeed converged

to the exact solution. Fig. 5-17 presents similar findings for the Sawtooth dataset.

Though the randomized algorithm coincidentally finds a better solution than full

search in earlier iterations, it eventually converges to the same accuracy subsequently.

These results for the two real image datasets reinforce our earlier statement that the

randomized algorithm converges completely within 4-5 iterations.

5.5.3 Processing Time

Lastly, we empirically compare the processing speeds of the randomized algorithm

and the full search approach. Although Sect. 5.4.3 predicts significant computational

savings by using the randomized algorithm, our MATLAB implementation actually

takes substantially longer than the full search algorithm to complete 4 iterations.

This difference is likely due to the inherent inefficiencies of MATLAB when reading

94

93.8

93.6

A 93.4-

. 93.2-

93

0 92.8

g 92.6-

92.4-

92.2-

921
0 1 2 3 4 5 6

Iteration Number

Figure 5-17: Illustration of convergence rate for the Sawtooth dataset, showing the
percentage of correct disparities over 6 iterations. The blue line represents the ran-
domized algorithm, while the green line denotes the accuracy of the exact full search
solution.

large arrays element-by-element. Conceivably, an implementation in C is expected

to be much faster and will better demonstrate the predicted computational savings

from the randomized algorithm.

Fig. 5-18 shows the processing time taken to run the randomized and full search

algorithms as a function of block width b. We measure all times on a Intel Core 2

Duo 2GHz processor using the synthetic1 dataset and a constant search width of 50.

As expected, the processing time for both methods increases with larger block sizes,

since both their computational complexities scale quadratically with b. However, we

also observe that as the block size increases, the randomized algorithm has a smaller

fractional increase in processing time compared to the full search method. To better

visualize this difference, we divide our data by a reference time for a 3 x 3 block to

nondimensionalize the processing times. At a block size of 19 x 19, the full search

method takes nearly 2.8 times the reference time, while the randomized algorithm

only requires about 1.8 times the reference time. Ideally, scaling the data in this

manner should produce similar-looking curves because the dependence on image size,

search width, and number of iterations is eliminated. As such, the reason that the

full search has a steeper dimensionless time curve than the randomized algorithm

100

is probably due to the greater number of memory reads that it requires, thereby

incurring a larger overhead in MATLAB which was not factored in the theoretical

predictions of computational complexity.

Next, Fig. 5-19 shows the processing time taken to run both algorithms as a

function of search window width w, again using the synthetic1 dataset and a con-

stant block size of 7 x 7. As the search width increases from 50 to 100 pixels, the

processing time for the full search rises significantly. In contrast, the time taken

for the randomized search remains relatively constant across a large range of search

widths, with the exception of a kink at 70 pixels due to an additional random match

being made within the search window (recall that the number of random searches

per iteration is m = o(w/2)J). This finding agrees with our earlier prediction that

the computational complexity of the randomized algorithm does not depend on the

size of the search window. For large search widths, the randomized algorithm is thus

much more efficient than a full search.

5.6 Discussion

5.6.1 Strengths and Limitations

In summary, the above results demonstrate that the randomized algorithm produces

an accurate disparity map when applied to both synthetic random-dot and real image

datasets. The algorithm uses coherency in the image data to focus on likely match

locations and minimize redundant block-wise comparisons. In so doing, it achieves a

very low computational complexity that is independent of search width. Furthermore,

unlike other fast block-matching methods which assume a unimodal cost function sur-

face and thus fail in the presence of periodicity, our iterative random search procedure

allows the algorithm to robustly identify true global minima with high probability.

Hence, in just a small number of iterations, the algorithm converges to the exact

solution obtained from a full search.

A key advantage of the randomized algorithm is its versatility in supporting any

101

900

800

700

600

500

400

300

200

100

0

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

Randomized

Full search

-------------- -- -- -----------------------------

'Randomized
3 7 11 15 19

Block width (pixels)

(a)

Full search
-- -----------

Randomized

3 7 11 15 19
Block width (pixels)

(b)

Figure 5-18: (a) Plot of actual processing time taken against block width b, for
4 iterations of the randomized algorithm (in blue) and the full search method (in
red). (b) Plot of dimensionless time as a function of block width, scaled against
the reference time for a 3 x 3 block. Notice that although the actual time for the
randomized algorithm is higher than that for the conventional full search, it incurs a
smaller fractional increase in processing time than the full search.

102

50 60 70 80
Search width (pixels)

90 100

Figure 5-19: Plot of processing time taken against search window width w, for the 4
iterations of the randomized algorithm (in blue) and the full search method (in red).
Notice that the time taken for full search increases with larger search widths, while
the randomized algorithm is relatively independent of the search parameter.

103

Randomized

Fulteac
---------------- ---

--

600

500

U

0 400

300
E

200

100 --------------

n I I I I I I

similarity measure. In our implementation, we have chosen to use locally adaptive

support weights to aggregate neighboring pixels according to their color similarity

and spatial proximity. Our experiments show that this method preserves arbitrarily

shaped depth discontinuities well. Using locally adaptive windows in conjunction

with randomized correlation is also especially advantageous because of the smaller

computational load compared to other methods. A full search using locally adaptive

windows is extremely computationally intensive as it requires a new Laplacian filter

kernel to be calculated for every candidate disparity. FFT-based correlation is also

difficult to implement because the locally adaptive windowing function is not constant

for different displacements.

As the randomized algorithm is inherently a local block-matching technique,

other similarity measures may also be used, such as the standard Normalized Cross-

Correlation (NCC) function that compensates well for different exposure levels. More-

over, for multiple-image datasets, the multiple-baseline approach described in Chap.

3 may be adopted. The random search procedure can be easily modified so that for

each candidate disparity with respect to a reference stereo pair, the corresponding

disparities for the other stereo pairs are also computed. All the matching costs may

then be summed or multiplied together to reinforce reliable matches while eliminating

faulty information.

Nonetheless, there are also limitations to the randomized algorithm. The main

disadvantage is that the overall shape of the cost function surface is not available due

to the sparse, random sampling of candidate disparities. As such, while the random-

ized algorithm is able to find the integer displacement of a given block, incremental

refinements cannot be made immediately. Furthermore, techniques which rely on

the local variation of matching score, such as adaptive windows [7] or shiftable win-

dows [8], cannot be applied. A simple solution would be to evaluate several disparity

values around the best value found so far and fit a Gaussian or parabolic curve in

order to find the subpixel displacement via interpolation. Alternatively, one may use

the Lucas-Kanade optical flow method to perform gradient descent on the matching

cost function around the best disparity estimate [10]. In both cases, subpixel refine-

104

ment should be made after the pixel-resolution disparity field from the randomized

algorithm has converged, so as to speed up processing.

Second, although the randomized algorithm makes use of the assumption that

the disparity map is mostly continuous to propagate good matching values, it does

not explicity enforce smoothness in the output. Hence, in the presence of noise,

the localized randomized algorithm may not only produce spurious matches, but

may also take longer to converge to the exact solution. Noisy image data distort

the cost function surface and potentially introduce many more local minima basins.

Propagating noisy matches may also cause the disparity field in earlier iterations to be

unstable as the random search is targeted around incorrect regions. A similar problem

occurs for pathological cases where periodicity in the image leads to multiple global

minima (e.g. an image of a picket fence). Since the local similarity measure cannot

disambiguate the potential matches and as there is no term penalizing discontinuous

disparities, the resulting disparity field is likely to be noisy.

Finally, the randomized algorithm does not include a neighborhood term that reg-

ularizes optimizations over occluded regions. In these regions, there is no correspond-

ing point in the right image, and thus the local similarity measure returns a mean-

ingless disparity value. Ideally, we should label and penalize these occluded regions

so that incorrect disparities are not propagated to regions with accurate matches. If

possible, we can do even better by filling in the missing values for these occluded

regions so as to form a complete 3D representation of the scene. In the next section,

we present some ideas to incorporate occlusion reasoning into the existing randomized

algorithm framework.

5.6.2 Extensions

To conclude our analysis of the randomized algorithm, we suggest ways to improve

its effectiveness as a stereo matching technique and further extend its usage to other

applications.

105

5.6.2.1 Occlusion Reasoning

As mentioned previously, the ability to account for occlusions is central to accurate

stereo matching. Such occluded pixels are often associated with a high matching

cost and can be detected during postprocessing using a threshold, above which they

are deemed as occluded. However, due to the randomized nature of sampling, not

all non-occluded pixels will necessarily have low matching costs at a given iteration.

Care should thus be taken to ensure that pixels which have not yet found their true

global minimum are not accidentally marked as occluded. Instead of applying a naive

threshold, we propose an adaptive threshold that decreases with the current iteration

number, such that earlier iterations utilize a higher threshold while later iterations

are more stringent in filtering out occlusions.

Alternatively, occluded areas may be detected using a consistency check between

the left-to-right and right-to-left disparity maps. A given pixel in the left image has

a correct match if its corresponding pixel in the right image has the same disparity

value (albeit in the opposite direction). However, if the two disparity values do not

fall within a small error margin, then the point is either mismatched or occluded

in the right image. At first glance, performing this cross-checking step appears to

double the processing load, since two disparity maps are computed instead of one

during each iteration. We note however that the calculation of the left-to-right and

right-to-left disparity maps can be done in parallel. Moreover, we can speed up

convergence by initializing the disparity field for the right-to-left comparison using

the left-to-right disparity field from the previous iteration. The resulting right-to-left

disparity field may in turn be used to refine the left-to-right disparity field during the

next iteration, where accurate right-to-left disparity values are also propagated on

top of the candidate left-to-right disparities from the two adjacent pixel neighbors.

While labelling occluded pixels on the fly prevents them from adversely affecting

other pixels via propagation, the tradeoff is that the operation is irreversible. A better

approach may then be to associate a confidence level to the disparity estimate of each

pixel. To this end, we propose using the ratio of the two lowest matching costs out of

106

all the candidate disparities as a rough measure of confidence, i.e. how much better

is the winning (lowest cost) disparity compared to the next best disparity estimate?

Intuitively, high-confidence matches have a well-defined global cost minimum, while

low-confidence matches might be trapped in noisy or wide local minima basins. At the

end of all iterations, the confidence values for each iteration may then be aggregated.

If a pixel has a confidence value higher than a certain threshold, then its disparity is

taken as correct; otherwise it is classified as occluded.

5.6.2.2 Efficiency

The efficiency of the randomized algorithm may also be improved in several ways.

First, when comparing blocks during the propagation and random search phases, we

can stop calculating the matching cost for the current candidate disparity if its partial

sum exceeds that of the best disparity estimate so far. This allows us to move on to

the next candidate disparity more quickly. Second, we note that the computation of

matching costs for adjacent pixels often involves the same pixel comparisons within

the overlapping regions of their blocks. Hence, instead of computing a new sum for

each adjacent pixel, we may retrieve the redundant pixel comparisons from memory

and sum only the missing terms.

Finally, the computational complexity of the algorithm may be greatly lowered by

compressing the images beforehand. One such compression scheme, known as com-

pressed image correlation, has been commonly used in Particle Image Velocimetry

(PIV) [14]. In PIV, a fluid is seeded with tracer particles, illuminated with a laser

sheet, and imaged using a high-speed camera. The fluid flow is then visualized by

tracking the particle displacements using cross-correlation. Prior to correlation, how-

ever, each frame may be compressed by keeping pixels with high intensity gradients

while removing smoother regions with low information content. The resulting image

is a sparse array containing only strong features, thereby reducing the number of pixel

comparisons and memory reads required for block-matching. Compressed image cor-

relation has also been tested on real images with promising results [15]. Presumably,

a combination of compressed image correlation and randomized matching should give

107

rise to even higher processing speeds.

Mathematically, a full search using compressed image correlation has a compu-

tational intensity of O(c2w 2 b2, 2), where e is the compression ratio, w is the search

window width, b is the block width, and s is the image width. Since the compression

ratio e is typically about 1, significant computational savings over a regular full search

are already possible. Suppose instead that randomized matching is implemented in

place of full search. Referring to Sect. 5.4.3, the computational complexity of the

randomized algorithm without compression is O(n(m+3)b2S 2), where n is the number

of iterations and m is the number of random searches per iteration. If compressed im-

age correlation is also employed, the complexity drops to O(e2 n(m + 3)b 2S2), leading

to a dramatic improvement in processing speed by a factor of over 10000. Random-

ized compressed image correlation thus has the potential to accurately process stereo

image pairs at tremendously high speeds.

5.6.2.3 Future Directions

Due to its low computational intensity, the randomized algorithm may be applied in

a myriad of applications requiring fast block-matching. For instance, Barnes et al.

have explored the use of fast randomized matching in the context of creative image

manipulation, with the aim of creating a real-time user interface for interactive image

editing [27]. Particle Image Velocimetry is another domain where the randomized al-

gorithm might be directly applicable. Typically, PIV processing involves performing

block-matching on a sequence of images using a cross-correlation similarity measure.

Since the tracer particles are free to move in any direction across different frames, PIV

correlation uses a 2D search window, in contrast to a 1D search strip for stereo match-

ing when the epipolar constraint is invoked. Unfortunately, the two-dimensionality of

the search window creates a substantial computational burden, especially when per-

forming a full search in the spatial domain. Conversely, the computational complexity

of the randomized algorithm does not depend on the size of the search window, and

is thus well-suited to speed up PIV processing. Furthermore, the displacement field

from a previous frame may be used to initialize the next frame by assuming that a

108

given block in the current frame retains the same displacement in the corresponding

block of the subsequent frame. In so doing, the number of iterations required for

convergence may be reduced.

Future work may be done to implement the randomized algorithm in C/C++, so

as to realize the true performance enhancements. The randomized algorithm could

also be compared to other fast block-matching algorithms or nearest neighbor search

methods, and evaluated in terms of its accuracy and speed.

109

110

Chapter 6

Conclusions

This thesis has described several methods for quickly and robustly performing stereo

matching on a set of images. The overall objective is to accurately recover a dense

disparity map indicating the correspondences of each point. In this final chapter, we

will summarize the key takeaways and discuss potential directions for future work.

6.1 Stereo Matching Basics

The theoretical underpinnings of stereo matching were first discussed in Chap. 2.

Due to the specific geometry of stereo matching, the search for correspondences may

be constrained along corresponding epipolar lines instead of the entire image. A

variety of techniques already exist to perform stereo matching. Some techniques

seek to match reliable features so as to generate a sparse scene reconstruction, while

the more common approach involves finding dense correspondences between images.

Typically, these dense correspondence algorithms may be further categorized as local

and global methods. Local approaches determine point correspondences by choosing

the candidate which minimizes a matching cost function. The selection of a suitable

support window for aggregating matching costs ensures reliable estimation. Global

methods, on the other hand, seek to minimize an energy function over the entire

image using a Markov Random Field (MRF) model, and explicitly enforce smoothness

assumptions about the disparity map. Although the problem is computationally

111

challenging, efficient strategies such as graph cuts and belief propagation have recently

been developed to produce some of the best results yet. Nonetheless, the processing

times of global methods are usually far longer than those of local methods, and thus

local methods are still frequently used in many real-time stereo applications.

6.2 Multiple-Baseline Stereo

In Chap. 3, we have presented an early approach to multi-view stereo, called multi-

baseline stereo. Multi-baseline stereo uses multiple stereo pairs with various baselines

to obtain precise, unambiguous depth estimates. Matching is performed by computing

either the sum of SSD-in-inverse-distance function or the product of EC-in-inverse-

distance table, whereby individual pairwise similarity measures have been aggregated

into a single function. The use of inverse distance as the common variable across

all stereo pairs allows reliable evidence to reinforce each other and faulty informa-

tion to be eliminated, thus reducing ambiguity and increasing the accuracy of depth

estimates. This technique is also particularly useful because it can accommodate

any cost function. Experimental results for the algorithm have shown its effective-

ness in recovering quantitative depth information from both synthetic and real image

datasets.

Once multiple viewpoints can be combined in an efficient and robust manner, other

post-processing techniques such as optical aberration correction, super-resolution,

and accurate subpixel interpolation become possible. These extensions are worth

exploring when dealing with multi-view stereo systems and light fields. The multi-

baseline approach thus lays the foundation for reconstructing dense, high-accuracy

3D models of objects and scenes.

6.3 Multi-Dimensional Correlation

In Chap. 4, we have proposed a stereo matching algorithm which takes into account

foreshortening effects so as to achieve robust stereo matching. Unlike existing methods

112

which first determine depth before estimating surface orientation (thus relying on the

accuracy of the initial depth estimate), our method simultaneously recovers the depth

and surface orientation of an imaged point by performing correlation in multiple

dimensions. The imaged surface is approximated as a plane and locally deformed

according to the surface orientation and camera geometry. The peak of the resulting

multi-dimensional correlation table then gives the most probable depth and tilt of

the point. The 2D surface orientation parameters may also be efficiently found by

using at least two ID searches along corresponding epipolar lines and then taking the

cross-product of the tangential vectors to obtain the surface normal.

Three methods for performing multi-dimensional correlation were proposed and

evaluated. The first method is an exhaustive search for the parameters which max-

imize the correlation between the deformed image windows. While computationally

intensive, this basic method allows us to easily visualize the behavior of the correla-

tion tables under different conditions. An intermediate window size which contained

sufficient intensity variation without excessive depth variation was found to work well.

The second method seeks to increase computational efficiency by noting redundant

terms in the correlation summation. Each pixel in the left image window is compared

to the right image window and the point-wise correlation value is added to multiple

table entries at a time, thereby avoiding duplicate comparisons. While this method

leads to computational savings in theory, our experiments unfortunately highlight

numerous limitations with the method. These include the lack of normalization, sen-

sitivity to the histogram binning resolution, the lack of reliable entries in the resulting

correlation table, and errors incurred after fitting a surface over the sparse table. Fur-

ther research is required in order to realize the predicted performance enhancements of

the efficient method. Finally, the third method uses a classical Levenberg-Marquardt

minimization algorithm to find the peak value of the multi-dimensional correlation

table. Experiments on synthetic datasets demonstrate the algorithm's ability to ac-

curately extract both depth and surface orientation even from stereo images with

limited foreshortening.

Future work could explore coarse-to-fine hierarchical approaches to improve the

113

efficiency of multi-dimensional stereo matching. Using at least two stereo pairs, it is

also possible to account of depth discontinuities near the pixel of interest. If the peak

correlation values for the two stereo pairs differ, it is likely that the point is close to

a depth edge. Based on this reasoning, the support windows may be better chosen to

accurately recover smooth surfaces without crossing over discontinuities.

6.4 Randomized Stereo Matching

Finally, Chap. 5 presented a new iterative, randomized algorithm that could signif-

icantly speed up stereo matching. The key insights behind the algorithm are that

random guesses for correspondences can often produce some good disparity matches,

and that these matches may be propagated to surrounding pixels based on the co-

herence of the disparity map. The algorithm starts from an initial random disparity

estimate, and then iteratively refines the disparity of each pixel by considering its local

neighborhood as well as randomly searching around the best existing disparity. Our

theoretical analysis and experimental results demonstrate that the algorithm rapidly

converges within a small number of iterations. To increase the accuracy of disparity

estimates, we employed locally adaptive support weights based on color segmentation

to successfully preserve arbitrarily-shaped depth discontinuities. Furthermore, since

only a fraction of all possible block comparisons are made, the randomized algorithm

has a far lower computational complexity than a conventional full search. Experimen-

tal results on synthetic and real images confirm its relative efficiency under different

block sizes and search widths.

As extensions, we have proposed a hierarchical scheme as well as subpixel interpo-

lation to refine disparity estimates. Several methods of occlusion reasoning were also

suggested, such as implementing an adaptive threshold, left-right cross-checking, and

measuring the confidence of candidate matches. The possibility of using compressed

image correlation in conjunction with the randomized algorithm was also discussed,

potentially leading to tremendous computational savings. Lastly, other promising

applications of such a fast and versatile technique were envisioned.

114

Bibliography

[1] D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense Two-frame
Stereo Correspondence Algorithms," Int'l Journal of Computer Vision, vol. 47,
no. 1, pp.7-42, 2002.

[2] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A compari-

son and evaluation of multi-view stereo reconstruction algorithms. Proc. Conf.

Computer Vision and Pattern Recognition, pages 519- 528, 2006.

[3] M. Goesele, N. Snavely, B. Curless, H. Hoppe and S. M. Seitz, "Multi-View Stereo

for Community Photo Collections," IEEE Int'l Conf. on Computer Vision, pp.
1-8, 2007.

[4] C. Loop, Z. Zhang, "Computing Rectifying Homographies for Stereo Vision,"
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 125-

131, 1999.

[5] D. G. Lowe, "Distinctive Image Features from Scale-invariant Keypoints," Int'l.

Journal of Computer Vision, vol. 60, pp. 91-110, 2004.

[6] M. Brown and D. G. Lowe, "Unsupervised 3D Object Recognition and Recon-
struction in Unordered Datasets," Int'l Conf. on 3-D Digital Imaging and Mod-

eling (3DIM 2005), pp. 56-63, 2005.

[7] T. Kanade and M. Okutomi, "A Stereo Matching Algorithm with an Adaptive
Window: Theory and Experiment," IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 16, no. 9, pp. 920-932, 1994.

[8] S. B. Kang, R. Szeliski and J. Chai, "Handling Occlusions in Dense Multi-View

Stereo," Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp.
103-110, 2001.

[9] K. J. Yoon and I. S. Kweon, "Adaptive Support-Weight Approach for Correspon-

dence Search," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28,
no. 4, pp. 650-656, 2006.

[10] B. D. Lucas and T. Kanade, "An Iterative Image Registration Technique with an

Application to Stereo Vision," Proc. DARPA Imaging Understanding Workshop,
pp. 121-130, 1981.

115

[11] R. Szeliski, R. Zabih, D. Scharstein, 0. Veksler, V. Kolmogorov, A. Agarwala, M.
Tappen and C. Rother, "A Comparative Study of Energy Minimization Methods
for Markov Random Fields with Smoothness-Based Priors," IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 30, no. 6, pp. 1068-1080, 2008.

[123 M. Okutomi and T. Kanade, "A Multiple-Baseline Stereo," IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 15, no. 4, pp. 353-363, 1993.

[13] G. Roth, D. P. Hart and J. Katz, "Feasibility of Using the L64720 Video Motion
Estimation Processor (MEP) to Increase Efficiency of Velocity Map Generation
for Particle Image Velocimetry (PIV)," ASME/JSME Fluids Engineering and
Laser Anemometry Conference, 1995.

[14] D. P. Hart, "High-Speed PIV Analysis Using Compressed Image Correlation,"
Journal of Fluids Engineering, vol. 120, pp. 463-470, 1998.

[151 S. S. Tan and D. P. Hart, "A Fast and Robust Feature-based 3D Algorithm
Using Compressed Image Correlation," Pattern Recognition Letters, vol. 26, pp.
1620-1631, 2005.

[16} D. G. Jones and J. Malik, "Determining Three-dimensional Shape from Orien-
tation and Spatial Frequency Disparities," Proc. European Conference on Com-
puter Vision, pp. 661-669, 1992.

[17] J. Robert and M. Hebert, "Deriving Orientation Cues from Stereo Images," Proc.
European Conference on Computer Vision, pp. 377-388, 1994.

[18 F. Devernay and 0. Faugeras, "Computing Differential Properties of 3-D Shapes
from Stereoscopic Images Without 3-D Models," Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 208-213, 1994.

[19 H. Hattori and A. Makim "Stereo Matching with Direct Surface Orientation
Recovery," Proc. British Machine Vision Conference, pp. 356-366, 1998.

[20] N. Xu and N. Ahuja, "A Three-view Matching Algorithm Considering Foreshort-
ening Effects," Proc. Computer Vision, Pattern Recognition and Image Process-
ing, pp. 635-638, 2003.

[21] D. Marr and T. Poggio, "Cooperative Computation of Stereo Disparity," Science,
vol. 194, pp. 209-236, 1976.

[22] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, "Motion-compensated
Interframe Coding for Video Conferencing," Proc. NTC 81, pp. C9.6.1-9.6.5,
1981.

[233 R. Li, B. Zeng, and M. L. Liou, "A New Three-step Search Algorithm for Block
Motion Estimation," IEEE Trans. Circuits and Systems for Video Technology,
vol. 4, no. 4, pp. 438-442, 1994.

116

[24] L. M. Po and W. C. Ma, "A Novel Four-Step Search Algorithm for Fast Block
Motion Estimation," IEEE Trans. Circuits And Systems For Video Technology,
vol. 6, no. 3, pp. 313-317, 1996.

[25] S. Zhu and K. K. Ma, "A New Diamond Search Algorithm for Fast Block-
matching Motion Estimation," IEEE Trans. Image Processing, vol. 9, no. 2,
pp. 287-290, 2000.

[26] Y. Nie and K. K. Ma, "Adaptive Rood Pattern Search for Fast Block-matching
Motion Estimation," IEEE Trans. Image Processing, vol. 11, no. 12, pp. 1442-
1448, 2002.

[27] C. Barnes, E. Shechtman, A. Finkelstein and D. B. Goldman, "PatchMatch:
A Randomized Correspondence Algorithm for Structural Image Editing," ACM
Transactions on Graphics (Proc. SIGGRAPH), 28(3), 2009.

[28] R. Szeliski, Computer Vision: Algorithms and Applications. Microsoft Research,
2010. [Online Draft]. Available at: http://szeliski.org/Book/

117

