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Abstract We propose a 3D environment modelling method
using multiple pairs of high-resolution spherical images.
Spherical images of a scene are captured using a rotat-

ing line scan camera. Reconstruction is based on stereo
image pairs with a vertical displacement between cam-
era views. A 3D mesh model for each pair of spherical

images is reconstructed by stereo matching. For accu-
rate surface reconstruction, we propose a PDE-based
disparity estimation method which produces continu-

ous depth fields with sharp depth discontinuities even
in occluded and highly textured regions. A full environ-
ment model is constructed by fusion of partial recon-

struction from spherical stereo pairs at multiple widely
spaced locations. To avoid camera calibration steps for
all camera locations, we calculate 3D rigid transforms

between capture points using feature matching and reg-
ister all meshes into a unified coordinate system. Finally
a complete 3D model of the environment is generated

by selecting the most reliable observations among over-
lapped surface measurements considering surface vis-
ibility, orientation and distance from the camera. We

analyse the characteristics and behaviour of errors for
spherical stereo imaging. Performance of the proposed
algorithm is evaluated against ground-truth from the

Middlebury stereo test bed and LIDAR scans. Results
are also compared with conventional structure-from-
motion algorithms. The final composite model is ren-
dered from a wide range of viewpoints with high quality

textures.
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1 Introduction

Scene reconstruction has been an important research

topic in computer and robot vision over the past decade
(Akbarzadeh et al., 2006; Desouza and Kak, 2002). The
problem of generating visually realistic graphical mod-

els of scenes from cameras has been addressed through
computer vision techniques. However, there are several
problems in environment modelling which are differ-

ent from the modelling of common objects. The biggest
problem is that normal cameras with a limited field-
of-view capture only a partial observation of the sur-

rounding environment. Reconstruction of a complete
model of the 3D environment requires a large number of
views to capture the scene and occluded regions. Recon-

struction of scene models from multiple images or video
acquired with a standard camera has been the focus
of considerable research. However, the limited field-of-

view presents a challenging problem to ensure complete
scene coverage for reconstruction.

In this research, we propose to reconstruct full static

3D environment models from multiple pairs of spherical
stereo images. A spherical camera captures the full sur-
rounding scene visible from the camera location. Acqui-

sition of stereo pairs of spherical images allows dense re-
construction of the surrounding scene. Integration of re-
constructions from multiple locations allows a complete

3D scene model to be acquired from a relatively small
number of spherical images. In this research a spheri-
cal line scan camera is used to capture high-resolution

(12574×5658, 70Mpixels) spherical stereo image pairs
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with a vertical baseline between views. To reconstruct

robust and accurate depth from stereo pairs dense floating-
point disparity maps are estimated using a partial dif-
ferential equation (PDE) based stereo matching algo-

rithm. This incorporates a novel cost function to ensure
accurate reconstruction for edges, depth discontinuities
and regions of uniform appearance. Automatic regis-

tration of reconstructions from multiple stereo pairs
at widely spread locations is performed using SURF
feature matching (Bay et al., 2008) and a RANSAC-

based algorithm to calculate 3D rigid transforms be-
tween multiple viewpoints. Finally a complete 3D model
of the environment is generated by integration of par-

tial scene models based on surface reliability from in-
dividual stereo pairs. This ensures both preservation of
surface detail from stereo reconstruction and reliable

reconstruction of a complete 3D scene model.
Preliminary versions of the approach presented in

this paper previously appeared in conference proceed-
ings (Kim and Hilton, 2009, 2010). In the work of Kim

and Hilton (2009), we proposed to use a spherical cam-
era for environment capture and to use a standard PDE-
based disparity estimation for scene reconstruction. Kim

and Hilton (2010) extended this approach to multi-
view capture and registration. In this paper, we ex-
tend the PDE based disparity estimation to achieve ro-

bust scene reconstruction and integrate this approach
with reliability-based multiple view registration to in-
troduce a complete workflow for outdoor scene recon-

struction. The performance of our proposed approach is
quantitatively evaluated against accurate ground-truth
measurement using active Light Detection and Rang-

ing (LIDAR) sensing. Scene reconstruction from spher-
ical stereo image pairs of large scenes achieves accuracy
of within <1% of the scene dimensions (<10cm over

10m) whilst also providing high-resolution colour ap-
pearance for visualisation applications. The following
are the main contributions of this paper:

– We present a complete workflow for reconstruction
of static 3D scene models.

– We introduce a robust multi-resolution PDE-based
disparity estimation method. PDE-based disparity
estimation produces floating-point disparity fields

to obtain accurate and smooth depth. We extend
the PDE formulation to handle problems of occlu-
sion at depth discontinuities and over-segmentation

in highly textured regions. A hierarchical structure
is used to allow solution for large images and to
accelerate the calculation. This approach is demon-

strated to achieve accurate disparity estimation on
the Middlebury stereo benchmark datasets.

– We introduce an efficient approach to reliably in-

tegrate reconstructions from multiple stereo pairs

whilst preserving the fine surface detail of individual

stereo reconstructions for large-scale scene models.
This integration algorithm exploits the estimated
reliability of surface reconstruction based on surface

visibility, orientation and distance to the camera.
– We evaluate the accuracy of reconstruction against

ground-truth models scanned by a LIDAR sensor

and analyse the characteristics and behaviour of er-
rors for spherical stereo imaging.

The rest of this paper is organised as follows: Section
2 outlines related previous works. Section 3 presents
the capture system using a line scan camera and spher-

ical stereo geometry for depth reconstruction. Section
4 presents a novel PDE-based disparity estimation al-
gorithm for reliable correspondence in the presence of

occlusion and highly textured regions, and Section 5
presents the reliability based integration algorithm to
register and combine reconstructions from widely spaced

locations into one complete 3D surface model of the
scene with high-resolution appearance. Experimental
results and discussion are given in Section 6, and Sec-

tion 7 presents the conclusion from this work. Supple-
mental video is also available showing results of recon-
struction for multiple scenes at: http://www.youtube.

com/watch?v=x3KdI8ZWZiQ.

2 Related Work

2.1 Environment modelling

Outdoor environment modelling can be classified into

two different categories according to the input sources:
active methods using range sensors and passive meth-
ods using only images.

Active techniques utilise ultrasonic or laser scanners
to measure distance to an object or surface. LIDAR
is one of the most popular depth ranging techniques,

which measures the range by the time delay between
transmission of a pulse and detection of the reflected
signal (Lemmens, 2007). Asai et al. (2005) developed

a 3D reconstruction system for outdoor areas using a
laser rangefinder and an omnidirectional multi-camera
system which can capture a wide-angle high-resolution

image. They captured range and colour images at 68
points in their university campus and merged them into
a common 3D space.

Active sensing techniques yield accurate depth in-
formation, but there are problems with respect to hard-

ware cost, materials in the environment and tempo-
ral/spatial consistency with an imaging sensor. Accu-
rate registration of photometric and geometric informa-

tion is important for visualisation applications such as
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Table 1 Image-based environment modelling techniques

Ref Input Strategy Reconstruction method Output
Vu et al. (2009) Multiple images MVS Graph-cut + variational 3D mesh

Furukawa et al. (2010) Multiple images MVS Patch matching Point cloud
Agarwal et al. (2009) Multiple images SfM Feature matching Point cloud
Goesele et al. (2007) Multiple images SfM + MVS Stereo matching Depth maps
Frahm et al. (2010) Multiple images SfM + MVS Plane sweeping 3D mesh
Cornelis et al. (2008) Stereo video + GPS SfM + Stereo Dynamic programming Simplified mesh
Pollefeys et al. (2008) Multiple videos + GPS SfM + MVS Plane sweeping 3D mesh

Kang and Szeliski (1997) Omnidirectinal images MVS Stereo matching 3D mesh
Lhuillier (2008) Omnidirectinal videos SfM Bundle adjustment Point cloud

Micusik and Kosecka (2009) Omnidirectinal videos MVS Superpixel stereo Simplified mesh

visual effects in film production. If the active sensing
technique is used, image sensing should be performed
separately. Sequential sensing cannot be used in a dy-

namic environment and simultaneous sensing from dif-
ferent locations requires calibration and registration to
align depth and image information. Recently, Banno

and Ikeuchi (2010) proposed a semi-automatic textur-
ing method for a dense model captured by a range sen-
sor using two spherical images.

Image-based methods are less sensitive to the envi-
ronment and require a simpler and less expensive setup
for reconstruction of 3D geometry. They are also inher-

ently temporally and spatially consistent with images
because they extract depth information from captured
images. Table 1 gives an overview of a representative set

of existing approaches to image-based scene modelling.
Accurate outdoor scene reconstruction from multi-view
images has been the focus of extensive research (Goe-

sele et al., 2007; Furukawa and Ponce, 2010; Vu et al.,
2009; Salman and Yvinec, 2009). Strecha et al. (2008)
created a benchmarking site for the quantitative evalu-

ation of multi-view stereo (MVS) algorithms. However,
the first problem of multi-view stereo is the relatively
small field of view (FOV.) Coverage of the surrounding

environment requires a large number of overlapping im-
ages of the scene. The second problem is calibration of
multiple cameras. Strecha et al. (2008) provided accu-
rate calibration data calculated using markers attached

to buildings and LIDAR scanning for the data sets. This
requires accurate calibration of all cameras in advance
which can be problematic.

Structure from motion (SfM) is a technique to si-
multaneously recover 3D structure of a scene and the
pose of a camera from a video (Dellaert et al., 2000;

Pollefeys et al., 2000; Cornelis et al., 2008). SfM orig-
inally dealt with multiple images from a single cam-
era, but has recently been extended to image collec-

tions from arbitrary cameras without prior knowledge.
Snavely et al. (2006) developed Bundler, a SfM software
for unordered image collections. Bundler is used for 3D

point cloud reconstruction and image registration on

large sets of photos of popular sites gathered from the
internet and photo collections. Camera parameters are
automatically extracted from images and used to ini-

tialise a MVS algorithm (Furukawa and Ponce, 2010).
Agarwal et al. (2009) reconstructed full 3D street

models from 150,000 photos downloaded from the inter-

net using grid computing with 500 cores over 24 hours.
This work is impressive but requires extensive resources
for parallel computing and data transfer. Frahm et al.

(2010) overcame this problem by using geometric and
appearance constraints to obtain a highly parallel im-
plementation on modern graphics processors and multi-

core architectures. Pollefeys et al. (2008) also used 3,000
video frames to reconstruct one building and 170,000
frames for a small town.

2.2 Reconstruction from spherical images

One of the easiest ways to generate a seamless back-

ground from a single viewpoint is synthesising panoramic
representations. Apple’s QuickTime VR (Chen, 1995)
captures a 360◦ panoramic image of a scene with a cam-

era panning horizontally at a fixed position. The over-
lap in images is registered first by the user and then
stitched together by the software using a matching al-

gorithm. Benosman and Devars (1998) obtain a depth
map by rotating two linear image sensors with respect
to an axis to generate two cylindrical projection images.

Although the panoramic synthesis generates a seamless
360◦ view in the horizontal direction, it cannot cover
the full 3D space because of the limited vertical field of

view of the cameras.
The most common way to capture the full 3D space

instantaneously is to use a catadioptric omnidirectional

camera which uses a mirror combined with a CCD. Mi-
cusik et al. (2004) proposed a 3D metric reconstruc-
tion of the surrounding scene from two or more un-

calibrated omnidirectional images. Lhuillier (2008) pro-
posed a complete system for SfM using omnidirectional
images. However, these catadioptric omnidirectional cam-

eras have a large number of systematic parameters in-
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cluding the camera and mirror calibration. Another prob-

lem of these cameras is the limited resolution. They use
only one CCD to capture the full 3D space, so that the
resolution of partial images from the full view is rela-

tively low. In order to overcome this resolution prob-
lem, the MIT City group developed a spherical capture
system1 which captures the scene with a normal cam-

era and automatically stitches photos together to gen-
erate a high-resolution spherical images (Teller et al.,
2003). Point Grey developed an omnidirectional multi-

camera system, the Ladybug2, which consists of six
XGA color CCDs to overcome the resolution problem.
Asai et al. (2005) used this Ladybug for outdoor envi-

ronment modelling by combining it with a range sensor.
Google also developed their own omnidirectional multi-
camera system to reconstruct and render street models

(Anguelov et al., 2010).

Li (2006) proposed an alternative method for high
resolution spherical image acquisition using two fisheye
lenses pointing in opposite directions and fusing the two
hemispherical images into a single image to construct

an immersive virtual environment. He used a spherical
projection to reformulate the conventional stereo vision
algorithm so as to realise spherical stereo for a pair of

spherical images. However, problems of spherical stereo
imaging with fisheye lenses are distortion and complex
search along a conic curve for stereo matching.

Instead of merging two spherical images from fish-

eye lenses, Kang and Szeliski (1997) composited cylin-
drical images from sequences of images taken while a
camera is rotated 360◦ about the vertical axis. They

reconstruct 3D models using feature tracking, SfM, and
multi-baseline stereo. Feldman and Weinshall (2005)
used the Cross Slits(X-Slits) projection with a rotat-

ing fisheye camera to generate a high quality spheri-
cal image and to reduce the dimension of the plenoptic
function. In the X-Slits camera, the projection model

is defined by two slits and the projection ray of every
3-D point is defined by the line that passes through
the point and intersects both slits (Zomet et al., 2003).

The image of a point is the intersection of the pro-
jection ray with the image surface. Nayar and Kar-
markar (2000) also proposed a similar rotational line

scan camera and Haala and Kada (2005) used a line
scan panoramic camera system to generate texture for
city models. Even though 2D image-based techniques

provide a wide view, the background scene can be dis-
torted in rendering according to the viewpoint because
it is produced by simple mapping to 2D planes. This

is tolerable in some areas, but it is not appropriate for

1 City group, http://city.csail.mit.edu/
2 Pointgrey, http://www.ptgrey.com/

many applications which require a realistic background

and dynamic change of view.

2.3 3D registration and fusion

In previous approaches using active sensors or stereo
reconstruction from narrow field-of-view conventional

cameras, it is common to reconstruct parts of the scene
and merge them into one single coordinate system to
large scale scenes. This is performed in two stages: reg-

istration of multiple reconstructions into a common co-
ordinate system and integration of the overlapping re-
constructions into a single surface model. Fisher (2007)

provides a summary of 3D registration and fusion meth-
ods on his on-line compendium of computer vision.

Iterative closest point (ICP) has been widely adopted

to register two point sets into a common coordinate sys-
tem (Besl and McKay, 1992). The ICP algorithm finds a
rigid 3D transformation (rotation and translation) be-

tween two overlapping clouds of points by iteratively
minimizing squared-error of registration between the
nearest points from one set to the other. The ICP has

been modified and extended to surfaces (Rusinkiewicz
and Levoy, 2001; Granger et al., 2001; Aiger et al., 2008)
and multiple sets (Chen and Medioni, 1992; Soucy and

Laurendeau, 1995; Williams and Bennamoun, 2001).
However, registration results in multiple overlapping
points sets or meshes with different levels of accuracy.

The ICP algorithm performs just registration of mul-
tiple meshes regardless of overlaps, surface boundaries
and reconstruction errors.

A number of algorithms have been proposed to merge
partially overlapping meshes into one single surface mesh
by optimising overlapped surfaces. Merrell et al. (2007)

proposed a visibility-based depth-map fusion algorithm,
which is used for urban 3D reconstruction (Pollefeys
et al., 2008). Depth layers are reconstructed by com-

paring visibility and reliability between neighbouring
views. Micusik and Kosecka (2009) took a similar ap-
proach with reconstructions from a Ladybug camera

to fuse depth maps into dominant planes. Furukawa
also proposed a view-clustering algorithm to extend
his patch-based multi-view stereo (PMVS) algorithm

(Furukawa and Ponce, 2010) to large scale reconstruc-
tion (Furukawa et al., 2010). The problem of these ap-
proaches is that fusing multiple overlapping layers can

result in loss of fine surface details due to registration
errors and noise.

In this paper, we are interested in removing multiple

outliers and noise on surfaces while keeping geometrical
surface details. We propose a reliable surface selection
algorithm based on surface visibility and reliability for

mesh registration and refinement.
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(a) (b)

Fig. 1 Spherical image representation: (a)Spherical imaging;
(b)Latitude-longitude imaging

3 Spherical Stereo Acquisition and
Reconstruction

In this work, we use a commercial off-the-shelf line-
scan camera3 with a fisheye lens in order to capture the
full environment as a high resolution spherical image.

A full spherical view is generated by mosaicing rays
from a vertical slit at the centre of a rotating fisheye
lens. The camera samples the rays on a hemisphere at

its centre of projection and stitches the rays from the
rotating slits together into a new image. The camera
rotates on the axis passing through its optical centre,

therefore the imaging geometry of the line-scan capture
can be regarded as conventional perspective projection
because all the rays in the spherical image intersect at

a single 3D point.

In order to recover depth information from a spher-
ical image pair, the scene is captured with the camera
at two different heights. In the line scan imaging, we

can regard the epipoles as the two poles and extend the
spherical image by latitude-longitude sampling as illus-
trated in Fig. 1. In this latitude-longitude geometry, the

great circles intersecting at the epipoles become parallel
straight lines. Therefore, the conventional correlation-
based matching over a 1D search range can be used to

compute the disparity of spherical stereo images if they
are vertically aligned. Ensuring that the displacement
between the camera views is parallel to the direction

of the line scan camera pixel array makes the epipolar
lines correspond to pixel columns in the spherical im-
ages. This relies on mechanical precision of the line scan

camera. In this work, we scanned a scene at a lower po-
sition and raised up the pole of the tripod to a higher
position for the second scan. Evaluation demonstrates

that this mechanism results in an alignment within 2
pixels for corresponding vertical scan lines in the re-
sulting spherical stereo image pair. If a less accurate

camera system is used, errors can be corrected to some

3 Spheron, http://www.spheron.com/en/intruvision/

solutions/spherocam-hdr.html

(a) (b)

Fig. 2 Spherical stereo: (a)Spherical stereo pair (top-
bottom); (b)Spherical stereo geometry

extent by rectification (Banno and Ikeuchi, 2010) or X-
slit projection (Feldman and Weinshall, 2005).

There are three advantages of using this line scan

cameras for stereo imaging. First, we can acquire high
resolution images because it captures an image by stitch-
ing image columns from a line scan camera. The maxi-

mum resolution of the image provided by the line-scan
camera used in this work is 12574×5658 which is suf-
ficient to capture the full environment with high reso-

lution details. Second, the stereo matching can be sim-
plified to a 1D search along the vertical scan line as
discussed above, while normal spherical images require

a complex search along conic curves or rectification of
the images. Finally, a relatively simple calibration is re-
quired. Depth reconstruction only requires knowledge

of the baseline distance between the stereo image pair
and correction of radial distortion in the vertical di-
rection. Radial distortion is rectified using a 1D lookup

table to evenly map pixels on the vertical central line to
the [0, π] range. Lens distortion parameters are static
values so that this mapping can be calculated for the

lens in advance. Figure 2 (a) shows an example of a
vertical stereo pair captured by the line scan camera
system.

To define the disparity between spherical stereo im-
age pairs, let us focus on an epipolar plane which is
defined by a 3D point and the two camera positions,

as shown in Fig. 2 (b). If we assume the angles of the
projection of the point P onto the spherical image pair
displaced along the y-axis are θt and θb, respectively,

the angle disparity d of point pt(xt, yt) can be defined
as the difference of the angles as:

d(pt) = θt − θb = (yt − yb)× π/h (1)

where h is the image height in pixels, yt and yb are
y-coordinates of the projection points pt and pb, respec-

tively. The distance of the scene point P from the two
cameras is calculated by triangulation as illustrated in
Fig. 2 (b). If B is the baseline distance between the cam-

era centers of projection and rt and rb are the distance
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(a) (b) (c) (d)

Fig. 3 Precision in surface reconstruction: (a)Integer disparity; (b)Half-pixel disparity; (c)Quarter-pixel disparity; (d)Floating-
point disparity

from P to the top and bottom cameras, respectively,
then:

rt = B/

(
sin θt

tan(θt + d)
− cos θt

)
rb = B/

(
cos θb −

sin θb
tan(θb − d)

)
(2)

Therefore, if the two spherical images are vertically

aligned and the correspondence of scene points between
the spherical stereo image pairs is known, we can com-
pute the angular disparity of the point with Eq.(1) and

its distance from the spherical camera with Eq.(2).

4 PDE-based Disparity Estimation

Disparity estimation is one of the most important steps
in image-based 3D reconstruction. Scharstein and Szeliski
(2002) present a taxonomy of existing stereo algorithms

together with a benchmarking site for their quantita-
tive evaluation. Most disparity estimation algorithms,
including recent approaches based on graph-cut (GC)

(Kolmogorov and Zabih, 2001) and belief-propagation
(BP) (Sun et al., 2003; Yang et al., 2008), solve the cor-
respondence problem on a discrete domain such as in-

teger, half- or quarter-pixel levels. This results in quan-
tisation error and is not sufficient to recover a smooth
surface.

Spherical stereo image pairs typically have relatively

small variations in disparity and strong radial distortion
because of the wide FOV of the fisheye lens. The narrow
baseline (<1m) relative to the scene depth (>10m) also

results in small disparity range for scene reconstruction.
Figure 3 shows the difference in surface reconstructions
from discrete and floating-point disparity fields for the

“Gate” dataset used for evaluation in Section 6.3. For
discrete disparity estimation in Fig. 3 (a)-(c), there is a
loss of surface detail and stepwise artifacts with depth

quantisation. These examples are reconstructed from
high resolution spherical images of 12574×5658. The
quantisation artifact will be even more obvious with

lower resolution images. This artifact can be reduced

by increasing the number of depth layers, e.g. calcu-
lating in 1/8 pixel levels, but this drastically increases
memory consumption and computational cost due to in-

creased search range. Variational approaches (Kim and
Sohn, 2003b; Alvarez et al., 2002; Slesareva et al., 2005)
which calculate disparity on a continuous domain can

be a solution to avoid quantisation artifacts. They allow
optimisation of stereo disparity on a continuous domain
as seen in Fig. 3 (d). Variational approaches are still

limited in accuracy of disparity estimation due to the
resolution of original images (Szeliski and Scharstein,
2004) and also require a discrete step size for solver im-

plementation. The step size can be adaptively refined
to evaluate a smooth disparity field with fine surface
details without an additional consumption of memory.

4.1 Background and problem definition

In variational approaches, the disparity vector fields are

extracted by minimizing an energy functional involving
a fidelity term Ef (·) and a smoothing term Es(·) such
as:

E(dt) = Ef (dt) + Es(dt)

= λ

∫
Ω

(It(p)− Ib(p+ dt))
2
dx

+

∫
Ω

Ψ(∇dt,∇It)dx (3)

where λ is a weight from the fidelity term, p ∈ Ω is

an open bounded set of R2, I(p) is a pixel value of the
point p, dt is a 2D disparity vector, and ∇ := (∂x, ∂y)T

denotes a spatial gradient operator. If we set the gra-

dient of the potential function Ψ(∇dt,∇It) as Eq. (4),
the minimisation problem can be solved by the associ-
ated Euler-Lagrange equation in Eq. (5) with Neumann

boundary conditions (Alvarez et al., 2002).

∇(Ψ(∇dt,∇It)) = g(∇It,∇dt)∇dt (4)

−∇E(dt) = div(g(∇It,∇dt)∇dt)

+λ(It(p)− Ib(p+ dt))
∂Ib(p+ dt)

∂d
= 0 (5)
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We obtain the solution of Eq. (5) by calculating the

asymptotic state (t → ∞) of the PDE:

∂d

∂t
= div(g(∇It,∇dt)∇dt)

+λ(It(p)− Ib(p+ dt))
∂Ib(p+ dt)

∂d
(6)

This PDE corresponds to the nonlinear diffusion equa-

tion with an additional reaction term (Weickert, 1997),
and g(·) is a diffusion tensor which controls the direc-
tion and amount of diffusion filtering.

Design of the energy function which keeps smooth
disparity fields for continuous surfaces while preserv-
ing sharp object boundaries has been the subject of

extensive research. In this section, we deal with three
problems in the PDE-based disparity estimation.

The first problem is over-segmentation in highly tex-
tured regions. Many researchers have focused on pro-
ducing sharp depth discontinuities because the diffusion

filtering tends to over-smooth object boundaries (Sle-
sareva et al., 2005; Zimmer et al., 2008). Image gradient
has been widely used to control the diffusion (Alvarez

et al., 2002; Kim and Sohn, 2003b), but this also affects
diffusion in planar regions with textured appearance be-
cause it is hard to differentiate between high gradient

due to discontinuities and changes in appearance due to
texture or shadows. Sun et al. (2008) proposed a joint
image/flow-driven optical flow to obtain sharp object
boundaries without over-segmentation. In Section 4.2,

we take Sun et al.’s idea as inspiration to design a new
diffusivity function controlled by a combination of im-
age and disparity gradients.

The second problem is due to stereo occlusion. Vari-
ational methods are popular for estimating optical flow

where displacements are relatively small between im-
ages so that the occlusion is negligible. However, stereo
images generally include large displacements and the

occluded regions result in distortions of the disparity
field because there is no valid correspondence between
the image pair. An occlusion detector based on bi-directional

matching is added to the PDE functional in order to
control the balance of fidelity and smoothing terms in
Section 4.3.

Finally, local minima and computational complex-
ity are serious problems in disparity estimation for high
resolution images. The maximum disparity in the stereo

pairs used in this work is 320 pixel with a resolution of
12574×5658. The PDE-based method cannot converge
to the optimal solution with such a large displacement.

Moreover, the computational load of PDE-based meth-
ods depend on the image size because of the iterative
solver. To overcome these problems, we propose a multi-

resolution approach using successive estimates at lower

(a) (b)

(c)

Fig. 4 Behaviour of diffusivity function (Eq. (7)): (a)Geman
and McClure’s function for s=1; (b)s(∇d) for ε = 1/e;
(c)Final diffusivity function

resolution to initialise successively higher resolutions.

This approach is presented in Section 4.4.

4.2 Diffusion tensor for highly textured region

Our approach modifies Nagel and Enkelmann (1986)’s

anisotropic diffusion tensor and Geman and McClure
(1985)’s diffusivity function to define a new diffusion
tensor controlled by image and disparity gradients which

handles the over-segmentation problem while preserv-
ing sharp object boundaries as follows.

g(∇I,∇d) = f(∇I, s(∇d))(∇I∇IT + L) (7)

f(∇I, s(∇d)) =
1

(1 + s(∇d)|∇I|2)2
(8)

s(∇d) = −ln(ε+ (1− ε) · e−|∇d|) (9)

In Eq. (7), L denotes the identity matrix and the term

∇I∇IT is the structure tensor of Nagel and Enkel-
mann’s method for anisotropic diffusion filtering. Equa-
tion (8) is a form of Geman and McClure’s diffusivity

function which behaves as illustrated in Fig. 4 (a) when
s=1. This is modified with Eq. (9) so that it is also
scaled by the gradient of the disparity field. Equation

(9) is a monotonically increasing function which con-
verges to 1 for ε = 1/e as shown in Fig. 4 (b). As a
result, the filtering direction is decided by the image

gradient ∇I, and the amount of smoothing is decided
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(a) (b) (c) (d)

Fig. 5 Comparison of disparity estimation for different formulations of the diffusion tensor (top: original image and dis-
parity maps, bottom: rendering of reconstructed model from upper direction): (a)Ground truth; (b)Image-driven method;
(c)Disparity-driven method; (d)Proposed method

by both image and disparity gradients (∇I and ∇d)
as shown in Fig. 4 (c). In regions with high disparity

gradient, the diffusivity function is more sensitive to
the image gradient because the image gradient is more
likely to be a depth discontinuity. In the region with low

disparity gradient, on the contrary, more smoothing is
performed regardless of image gradient because the im-
age gradient has a higher possibility to be texture. In

order for Eq.(6) to be an energy gradient, we regard ∇d
in Eq. (9) as a constant ∇d0 for each iteration step in
the PDE linearisation.

Figure 5 shows results of different diffusivity func-

tions. The original image in Fig. 5 (a) consists of three
planes with strong textures. We simulated a Geman
and McClure’s diffusivity function with isotropic diffu-

sion (Kim and Sohn, 2003b) for the image-driven varia-
tional method, and Zimmer et al. (2008)’s algorithm for
the disparity-driven method. The image-driven method

Fig. 5 (b) results in incorrect discontinuities on the
planar surface due to the high image gradient result-
ing from the texture pattern. On the other hand, the

disparity-driven method Fig. 5 (c) produces smooth
surfaces, but we can see diffusion of the fields at ob-
ject boundaries. The proposed approach Fig. 5 (d) over-

comes the limitations of both image-based and disparity-
based methods producing a smooth disparity field on
the planar surface whilst correctly preserving disconti-

nuities at object boundaries.

4.3 Occlusion handling

Occlusion in stereo imaging results in areas which are
visible from one view but not the other due to the dis-

placement of the viewing position. In the occluded ar-
eas, there is no valid correspondence between the im-
age points and many stereo matching algorithms find

the most similar image regions (Scharstein and Szeliski,
2002). The occlusion problem can be negligible in some
application areas but it is a critical problem in 3D re-

construction because forcing false matching in occluded
regions induces distortion in the depth fields.

In variational stereo methods, some researchers have
designed energy functionals which handle occlusion re-
gions and converge to a minimum solution. Strecha

et al. (2004) proposed to compute visibility of pixels
to avoid this problem. The visibility is modelled as a
mixture problem by introducing a set of hidden vari-

ables which are sequentially updated in the EM algo-
rithm. Similarly, Ben-Ari and Sochen (2007) detected
occlusions using a level-set method and performed dis-

parity estimation only for unoccluded regions. Alvarez
et al. (2007) proposed a symmetrical dense optical flow
energy functional which modifies Eq. (3) by adding a

bi-directional disparity checking term. Ince and Kon-
rad (2008) also proposed a similar bi-directional dis-
parity checking method, but they put the bi-directional

matching penalty in the fidelity term.

In this work, we take a similar approach to Ince and

Konrad (2008)’s work for occlusion handling, but make
it simpler by adding the bi-directional matching func-
tion as a weighting factor of the fidelity term in the

iterative solver. In order to penalise the fidelity term in
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occluded regions, we change the weighting factor λ of

Eq. (6) to a function of bi-directional disparity match-
ing as follows:

∂dt
∂t

= div(g(∇It,∇dt)∇dt(p))

+ h
(
|d0t (p) + d0b(p+ d0t )|

)
· (It(p)− Ib(p+ dt))

∂Ib(p+ dt)

∂d
(10)

h(x) =
λ1

(1 + x2)2
(11)

Equation (11) is the monotonically decreasing func-
tion proposed by Geman and McClure (1985), illus-

trated in Fig. 4 (a). In visible regions, the fidelity and
smoothing terms are balanced to find the optimal solu-
tion. In occluded regions, anisotropic diffusion filtering

increases smoothness of the disparity field and propa-
gates reliable depth information from visible regions to
occluded regions.

To solve Eq. (10), we discretise the parabolic system

by finite differences and the computationally expensive
solution of the nonlinear system is avoided by using a
first-order Taylor series expansion in an implicit dis-

cretisation:

I(p+ dk+1) ≈ I(p+ dk)

+ (dk+1 − dk)
∂I(p+ dk)

∂p
+ ek(p+ dk) (12)

Finally, the regularized disparity field can be found in
a recursive manner by updating the discretised field of
Eq. (10) (Johnson, 1988).

Figure 6 shows a comparison of reconstruction re-
sults with and without occlusion handling. Figure 6 (a)

is parts of the “Gate” images used for evaluation in
Section 6.3. The black regions in occlusion map repre-
sent regions where the bi-directional matching error in

Eq. (10) is larger than 1 pixel. Fig. 6 (b) and (c) are
parts of the estimated disparity fields and reconstructed
model without and with the occlusion handling term,

respectively. This example demonstrates that the dis-
parity field without the occlusion handling is blurred
and corrupts the structure boundaries, while the re-

construction with the proposed occlusion handling pro-
duces sharper depth discontinuities with clear bound-
aries.

4.4 Hierarchical approach and initial estimation

In general, the computational load for the iterative solver
and convergence to local minima are the most serious

problems in variational methods because the energy

(a)

(b)

(c)

Fig. 6 Comparison of stereo reconstruction without and with
occlusion handling: (a)Stereo pair (Left: top image, Centre:
bottom image, Right: occlusion map); (b)Estimated dispar-
ity fields dt (Left: without occlusion handling, Right: with
occlusion handling); (c)Reconstructed model (Left: without
occlusion handling, Right: with occlusion handling)

functional in Eq. (3) can be non-convex due to its fi-

delity term. Alvarez et al. (2002) used a scale-space ap-
proach and Brox et al. (2004) used a warping method
to avoid convergence to local minima for large displace-

ments.

We use a hierarchical structure which starts from
low resolution images and recursively refines the re-

sult at higher levels in order to reduce the computation
time and avoid local minima. Multi-resolution images
are expanded using a Gaussian pyramid (Burt, 1981) to
construct a G-level hierarchical image structure, which

involves low-pass filtering and down-sampling the im-
age by a factor of 2. At each level, the input disparity
field from the previous level is up-sampled and used as

an initial field for calculating the disparity field at that
level. This hierarchical approach also has the merit of
reducing the computation time for large images. The

hierarchical approach with G=4 has been found to give
an order of 8 reduction in computational time over sin-
gle resolution disparity estimation.

However, variational methods implemented with a
hierarchical structure, in general, have difficulty in re-
constructing small details with strong depth disconti-

nuities when initialized from a constant depth, since
the required image details are lost at coarser levels of
the pyramid. Therefore the number of hierarchy should

be carefully chosen according to the characteristics of
scenes so that it can avoid local minimum while keep-
ing small details. In practice we restricted the maximum

level to G=4 for 12574×5658 spherical images and to
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Fig. 7 Block diagram for disparity estimation

G=3 for 6284×2829 images (which means the coarsest

image has a resolution of 786×354) and provide an ini-
tial disparity field for the coarsest level. A magnitude-
extended Laplacian pyramid can also be a solution to

avoid loss of small objects (Sizintsev, 2008).

The initial disparity field is generated by window-

based matching with a region-dividing technique (Kim
and Sohn, 2003a) based on the ordering constraint (Yuille
and Poggio, 1984). The ordering constraint states that

if an object A appears to the left of an object B in
the left image, then object A will also appear to the
left of object B in the right image. The ordering con-

straint can be violated when a thin object is placed
close to the cameras. In practice the constraint is rarely
violated for vertical stereo pairs of environments. The

approach performs point matching in order of the pos-
sibility of correct matching (measured by magnitude
of a Sobel edge detector) and divides the region into

sub-regions at the true matching point. After the re-
gion splits into two sub-regions, the search ranges of
the points in each sub-region are restricted to the cor-

responding sub-region. For matching criteria, we found
that the Mean Absolute Error (MAE) works better for
the images from controlled environment such as indoor

or synthetic images with controlled illuminations, and
the Normalised Cross Correlation (NCC) is better for
outdoor scenes where the brightness may change, as

observed by Hirschmüller and Scharstein (2008).

Figure 7 shows a block diagram and Table 2 is a list
of parameters for the whole disparity estimation pro-

cess. If λ1 is too large, the PDE solver diverges. On the
other hand, if λ1 is too small, disparity fields are over-
smoothed. Gradient and time step sizes are used for

descritisation of the PDE solver (Johnson, 1988). They
are related to the convergence and speed of the PDE
solver. They were experimentally decided but fixed to

these values for all experiments.

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Hierarchical disparity estimation results at each step:
(a)Initial disparity (786×354); (b)G=3 (786×354); (c)G=2
(1571×708); (d)G=1 (3142×1415); (e)Final disparity (G=0,
6284×2829); (f)Non-hierarchical result

Table 2 Parameters for disparity estimation

Parameter Values
Level of hierarchy G=3
Window size W=16x16
Weight for fidelity term λ1 = 0.0005
Gradient step size δI=3 / δd=1
Time step size τ=0.0001

Figure 8 shows an example of initialisation and re-

finements at each level of the Cathedral scene in Fig.
Fig. 2 (a). The initial estimation by the region-dividing
technique provides a rough initial disparity field at the

lowest resolution (Fig. 8 (a)), which is refined to the op-
timal solution with the proposed method for increasing
resolution in the hierarchy (Fig. 8 (b)-(e)).

Results are compared with non-hierarchical process-
ing. The proposed algorithm failed to find disparity

fields for full resolution images without initial dispar-
ity estimation because variational methods cannot be
directly applied to large displacements (Alvarez et al.,

2002; Brox et al., 2004). The maximum disparity of the
test images is 120 pixels. Initialising the non-hierarchical
implementation of the proposed algorithm with the ini-

tial disparity field results in convergence to local min-
ima around regions with erroneous initial disparity fields
as shown in Fig. 8 (f). Application of the proposed hier-

archical approach correctly recovers disparity even with
errors in the initialisation as shown in Fig. 8 (e). We
also compared processing times of the algorithms on a

normal PC. It took around 6 hours for the resolution
of 6284×2829 images with NCC-based initial dispar-
ity estimation, while it took less than an hour with a

three level (G=3) hierarchy and produced more accu-
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rate results. This demonstrates that the proposed hi-

erarchical approach can improve both computational
efficiency and convergence for regions with large dis-
parity overcoming the problem of convergence to local

minima.

5 3D Model Reconstruction

5.1 Single stereo pair reconstruction

The estimated dense disparity fields can be converted
into depth information by the spherical stereo geom-
etry as described in Section 3. A mesh model of the

scene is then obtained by sampling vertices as a M -
pixel grid and triangulating adjacent vertices from the
original texture and depth information. The triangula-

tion is generated as a regular mesh grid on 2D plane and
the mesh grid is projected to 3D space to create a 3D
mesh model. The vertex points are described in spheri-

cal coordinates, so we convert them into the Cartesian
coordinate system.

Figure 9 shows examples of reconstruction from spher-

ical stereo image pairs. Most of the sky regions are
automatically removed because they have zero dispar-
ity which means infinite distance. However, the sky re-

gions sometimes show visually annoying artefacts in re-
construction because of the lack of texture or moving
clouds. Pollefeys et al. (2008) proposed an automatic

sky removal algorithm using learning colour distribu-
tion of the sky offline via k-means clustering but it still
requires manual refinement in various cases. Powerful

learning and recognition algorithms such as SuperPars-
ing (Tighe and Lazebnik, 2010) can improve the perfor-
mance but we simply manually removed the sky regions

in this research.
The results show a natural-looking environment around

the captured location. Changes in the viewpoints result

in distortion of the scene because of self-occlusion from
the centre of projection of the spherical image as seen
in the circled regions in the third row of Fig. 9. This

erroneous surface is generated to extract an estimate
of a surface by extrapolation given no observation. We
define this extrapolated surface around a depth discon-

tinuity region as a false surface. There is no way to
get information about occluded regions behind any ob-
ject seen from a single location. This occlusion prob-

lem occurs not only between objects but even on the
same object at step discontinuities. False surfaces oc-
cur along a radial direction from the camera centre of

projection and can be removed by evaluating the angle
between the surface normal and direction to the cen-
tre of projection in the disparity field. However, due

to the inherent smoothing of the disparity field in the

(a) Cathedral (b) Car park

Fig. 9 Reconstruction from a single spherical stereo pair
(Top row: Captured spherical image, Second row: Estimated
disparity field mapped to grey scale Third row: Reconstructed
mesh model, Fourth row: Surface refinement with normal vec-
tors)

PDE solution false surface may not be orthogonal and

a threshold is required to remove them. The fourth row
of Fig. 9 shows the surface refinement with the fixed
angle threshold of 83◦. It failed to clearly remove false

surfaces and also damaged other true surfaces such as
the ground or details on the surfaces.

In this section, we address two problems of the sin-

gle stereo pair reconstruction: 1) How to overcome the
occlusion problem; 2) How to remove false surfaces and
retrieve true surface. In order to solve the occlusion

problem, we need more information about the scene
structure, shape and appearance from multiple view-
points. Merging reconstructions from multiple stereo

pairs into a common 3D scene structure is a possible
solution. However, integrating multiple surfaces raises
a problem of surface overlap and requires a surface re-

finement process because the overlapping surfaces may
include false surface or inaccurately reconstructed sur-
faces which have lower reliability. In the following sub-

sections, we provide a brief survey of existing surface
registration and fusion algorithms, and propose a novel
technique to generate a complete mesh structure of the

scene from multiple meshes.
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5.2 Integration of reconstructions from multiple

spherical stereo pairs

A number of multiple-view reconstruction algorithms
have been developed as listed on Strechas benchmark-

ing site (Strecha et al., 2008) and the Middlebury multi-
view reconstruction benchmarking site4. However, these
approaches require calibration for each capture point.

Existing methods introduced in Section 2.1 and 2.3
generally use wide-baseline feature matching to recover
camera parameters and reconstruct sparse 3D point

clouds from a large number of images. Our approach
is advantageous because a dense structured mesh is re-
constructed from narrow-baseline stereo pairs with sim-

ple calibration steps and it requires a relatively small
number of images.

5.2.1 Mesh registration

As addressed in Section 2.3, the ICP algorithm can pro-
vide a solution to extract a 3D rigid transform between
reconstructed meshes from different capture points. The

algorithm selects the closest points as correspondences
and calculates the rigid transformation, i.e., rotation
and translation (R,t), minimising the energy:

ER(R, t) =

Nm∑
i

Nd∑
j

wi,j∥mi − (Rdj + t)∥2 (13)

whereNm andNd are the number of points in the model
set m and reference set d, respectively, and wi,j are the

weights for a point match.

In order to automate the initialisation of the ICP
registration, we use SURF feature matching (Bay et al.,
2008) between captured images for different stereo pairs.

The resulting matches are used as reference points for
3D matching by projecting them into 3D space with
the estimated depth field. However, these points are

not reliable enough to be used in ICP registration if
the capture points are far from each other because two
possible sources of errors exist: errors in SURF match-

ing between widely spaced image pairs with radial dis-
tortion; and errors in the reconstructed depth from a
single narrow-baseline spherical stereo image pair.

A robust wide-baseline registration algorithm is there-
fore proposed using RANSAC (Fischler and Bolles, 1982)
to calculate an initial 3D rigid transform and eliminate

outliers in SURF matching between pairs of reconstruc-
tions from spherical stereo images.

4 Middlebury multi-view, http://vision.middlebury.edu/

mview/

5.2.2 Reliable surface extraction

The final step is to refine registered surface estimates

from spherical stereo pair reconstructions in overlap-
ping regions based on reliability. Poisson reconstruc-
tion (Kazhdan et al., 2006), depth map or range image

merging (Gargallo and Sturm, 1988) and mesh fusion
(Turk and Levoy, 1994; Hilton et al., 1998) have pre-
viously been proposed as methods to produce a single

mesh structure from a set of oriented points, multiple
depth fields, or partial meshes. However, in the pres-
ence of measurement errors such as differences in sam-

pling and errors in registration, loss of details on the
original surface may occur because the algorithms gen-
erate combined surface from overlapping regions. False

surfaces from self-occlusion may also introduce errors
in integration. Furukawa et al. (2009) proposed an op-
timized surface boundary extraction for self-occlusion

using axis alignment for Manhattan-world scenes. How-
ever, this approach also results in loss of surface detail
due to the planar surface approximation. Therefore we

propose a surface selection algorithm to select the most
reliable surface in overlapping regions of surface recon-
struction.

The most similar approach to our algorithm is the
visibility-based depth-map fusion approach proposed

by Merrell et al. (2007). This approach renders depth
maps of neighbouring views into a reference view and
generates a reliable depth by considering stability and

confidence of reconstructed depth layers. The stability
is measured by occlusion and free-space violation, and
the confidence is calculated from errors in the plane-

sweep stereo reconstruction. In this work, we use angles
of the surface normal vector and distance to the cam-
era centre of projection as a measure of reliability in-

stead of the free-space assumption and stereo disparity
matching error used in Merrell’s work. This approach is
advantageous in finding the relationship between ver-

tices and the camera centre in the spherical imaging
system because the vertices are generated from a nar-
row baseline vertical image pair so the membership of

vertices from each capture points are clear, while plane-
sweeping reconstructs vertices from sparse images sets.

Figure 10 (a) shows an illustration of a real sur-
face and overlapped surfaces reconstructed from three
camera pairs. The overlapped surfaces include false sur-

faces from self-occlusion and less reliable (secondary)
surfaces. We assume that the reconstructed surface is
more reliable when the surface normal vector and cam-

era viewing direction are aligned, and the distance to
the camera is closer. Our approach is to choose the most
reliable surface in any region and discard all false and

less reliable overlapping surface reconstructions.
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(a) Overlapped surfaces from 3 cameras

(b) Visibility constraint violation

(c) Morphological dilation process

Fig. 10 Reliable surface extraction

Figure 10 (b) shows notations used for evaluating
reliabilities of overlapping surfaces. Let us assume we

have multiple vertical stereo captures at positions C =
{C0, . . . Ci, . . .} and corresponding reconstructed mesh
models for each pair Mi = {Vi, Ni, Ti} composed of

vertices Vi = {vi0, . . . , vis, . . .}, vertex normal vectors
Ni = {ni

0, . . . , n
i
s, . . .} and faces Ti = {ti0, . . . , tis, . . .}.

The vertex normal vector ni
s of the s-th vertex on the

i-th reconstructed mesh is calculated by averaging the
normal vectors of neighbouring faces within the range
of R from the vertex vis to get a global surface normal

direction regardless of the fine details on the surface.
Then the projection vector τ is and facing angle θis are
expressed as follows:

τ is = Ci − vis (14)

θis = arccos

(
cis · ni

s

|cis||ni
s|

)
(15)

In order to find overlapping surfaces, the visibility
constraint (Hilton, 2005; Merrell et al., 2007; Furukawa
et al., 2009) is applied on all vertices. The visibility test

is generally used for occlusion detection, but we use it
to identify surface overlaps. Conflicted surfaces from
the vertex vis are searched along the normal vector ni

s

in the range of ThR. If we assume a set of overlapping
vertices Vo = {vis} from meshes M = {Mi} is detected
by the test, we calculate τo = {τ is} and θo = {θis} for

the set Vo. A measurement of reliability U(v) of each

Fig. 11 Block diagram for mesh registration

(a)

(b)

(c)

Fig. 12 Results of mesh fusion: (a)Single view recon-
structions from three different points (left, centre, right);
(b)Integrated mesh (Blue: left, Red: centre, Green: right);
(c)Rendering with textures

vertex is calculated based on the facing angle and the

distance from the camera centre using Eq. (16), and the
most reliable vertices are selected.

V = argmax
vi
s∈Vo

U(vis)

= argmax
vi
s∈Vo

(
Ud(v

i
s) + λ2Uθ(v

i
s)
)

(16)

Ud(v
i
s) =

{
dmax/|τ is|, if |τ is| < dmax

0, else
(17)

Uθ(v
i
s) =

∣∣∣∣π/2θis

∣∣∣∣ , (
−π/2 < θis < π/2

)
(18)

Application of this algorithm for all individual ver-
tices is a time-/memory-consuming process and pro-

duces erroneous results with small isolated surface de-
tails. Therefore we down-sample the vertices with aver-
aging normal vectors for neighbours in the radius of R

and perform the above reliable vertex selection. Once
all false and secondary vertices are removed, the re-
moved vertices at the border with reliable surfaces are

recovered as an morphological dilation process in or-
der to cover visible cracks as shown in Fig. 10 (c). Fi-
nally the original dense mesh is recovered from the re-

maining down-sampled vertices. We do not merge or
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(a) Variational stereo with occlusion handling

(b) BP + Diffusion filtering

(c) Cost aggregation

(d) Proposed algorithm

Fig. 13 Estimated disparity maps (from left to right: Tsukuba, Venus, Teddy and Cones)

re-triangulate vertices from different capture points to
keep surface details. Mesh zipping method (Turk and
Levoy, 1994) can be applied for overlapped vertices if a

manifold mesh structure is required.

Figure 11 shows the whole process for multiple mesh
registration and Fig. 12 shows an example of the mesh

registration with the surface selection. Figure 12 (a)
shows single viewpoint reconstructions from three dif-
ferent viewpoints for the same scene. Surface distortions

are observed for the surface parallel to the viewing di-
rection as well as errors from occlusions. Mesh integra-
tion is performed for the three incomplete meshes with

the heuristically decided parameter sets: M=8, λ2=1.0
R=10cm, dmax=30m and ThR=70cm. The contribu-
tion of each mesh to the final merged mesh is shown in

Fig. 12 (b). The blue part is from the left viewpoint,
the red is from the central view, and the green is from
the right view. Figure 12 (c) show the final rendering

with texture from corresponding images.

6 Experimental Results

All test scenes presented in this section were captured
with a Spheron commercial line scan camera introduced

in Section 3. We attached a Nikon 16mm f/2.8 AF fish-
eye lenses to the system and captured vertical stereo
pairs with a baseline of 60cm. The maximum resolution

of images is 12574×5658, and we use full resolution im-
ages for single stereo pair reconstruction, and half res-
olution pairs for multiple stereo reconstructions due to

restrictions of memory. In order to demonstrate the gen-
eral performance of the proposed disparity estimation
algorithm, we first show the results with narrow base-

line stereo images from the Middlebury benchmark-
ing site. Then we present mesh models reconstructed
from stereo image pairs captured with the line scan

camera. Reconstructions are evaluated against ground-
truth range data scanned with a LIDAR sensor. We
also analyse the characteristics and behaviour of errors

for spherical stereo imaging. Finally we compare the
results of mesh fusion with other MVS and SfM-based
methods, and show virtual view rendering results of re-

constructed models from arbitrary viewpoints.
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Fig. 14 Middlebury ranking with 1.0 pixel threshold

Fig. 15 Comparison of RMSE

6.1 Evaluation of disparity estimation

For evaluation of the proposed PDE-based disparity

estimation algorithm, we used the Middlebury stereo
benchmarking test bed5. Figure 13 shows subjective
comparison of estimated disparity maps with state-of-

the-art methods. We present comparison with the fol-
lowing methods: Ben-Ari and Sochen (2007)’s varia-
tional method which was introduced in Section 4.3;

BP+diffusion (Banno and Ikeuchi, 2009) approach which
is not a variational method but uses anisotropic diffu-
sion filtering after belief-propagation to make smooth

3D surface reconstructions; and Min and Sohn (2008)’s
local cost aggregation method using anisotropic diffu-
sion and occlusion handling. The test bed does not

include many variational methods because most vari-
ational methods cannot estimate large displacements.
Multi-resolution scheme would allow to overcome this

problem, but such methods are not available in the test
bed. Comparison to the proposed method demonstrates
that the proposed method produces smoother maps
with sharp object boundaries even in occluded regions.

The proposed algorithm is ranked at 34 in the Bad Pixel
Percentage (BPP) test among 90 algorithms on the test
bed as shown in Fig. 14. The approach shows a rela-

tively good performance for simple scenes like Venus
and Cones. The variational stereo, BP+diffusion and
cost aggregation are ranked at 47, 39, and 28, respec-

tively.

5 Middlebury stereo, http://vision.middlebury.edu/

stereo/

The proposed method is not ranked high in the BPP

test. However, good performance in the BPP test does
not guarantee good surface reconstruction, because the
BPP test calculates only the ratio of erroneous pixels

and ignores the magnitude of errors which can produce
large errors in model reconstruction. Variational meth-
ods tend to spread errors into neighbouring pixels to

suppress prominent errors which result in a relatively
low ranking in the BPP test despite good subjective
performance indicated in Fig. 13. Many GC and BP-

based methods are ranked higher in the BPP test, but
they produce discrete disparity maps which can cause
quantisation artifacts as already shown in Fig. 3. The

Adapting BP algorithm (Klaus et al., 2006) which is
ranked top of the BPP test fits the disparity fields into
segmented planes so it loses all surface detail.

We also compared root mean square error (RMSE)
of the disparity map to the ground truth in Fig. 15. The
image-driven (Kim and Sohn, 2003b) and disparity-
driven (Zimmer et al., 2008) approaches are variations

of the tensor types introduced in Section 4.2. The re-
sults were produced from the same initial disparity maps
for the proposed algorithm. The errors are measured ex-

cept at the boundary 25 pixels of the images because
some algorithms do not have boundary processing. The
comparison of RMSE shows that the proposed method

competes with state-of-the-art methods.
The tests in this section demonstrate that the pro-

posed algorithm shows comparable performance in the

general cases of stereo disparity estimation. The advan-
tage of the proposed approach is to generate continuous
depth fields while preserving surface details. The per-

formance of the approach is evaluated further in Section
6.3.

6.2 Error analysis of spherical stereo

Before moving to 3D reconstruction using spherical stereo,
we consider the characteristic of errors in spherical stereo

because it has serious radial distortion and works in a
spherical coordinate system. In spherical stereo, depth
error ε = (r̂−r) from disparity estimation error e varies

according not only to the distance but also to the eleva-
tion angle for spherical stereo imaging as we can derive
from Eq. (2), when the estimated depth with error is

given as Eq. (19).

r̂t = rt + εt = B/

(
sin θt

tan(θt + dt + et)
− cos θt

)
(19)

Figure 16 (a) shows the behaviour of depth errors
according to the elevation angle θt and baseline dis-

tance B for 1◦ error in disparity at the same dispar-
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(a)

(b)

(c)

Fig. 16 Behaviour of depth errors in spherical stereo:
(a)Depth error at the same angle disparity; (b)Depth error
at the same elevation angle; (c)Depth error at the same dis-
tance

ity d. Figure 16 (b) shows the depth error according
to the disparity d at 90◦ of elevation angle (e.g. ac-

cording to the distance from the camera). From Fig.
16 (a), we observe that the disparity error around the
centre of the image is more sensitive to depth error

because the error increases as it comes to the centre
area. However, the distance for the same angle differ-
ence increases as it approaches the poles (0◦ and 180◦).

This is shown in the spherical stereo geometry of Fig. 2
(b), and the depth error also increases as the distance
increases as seen in Fig. 16 (b). Therefore they counter-

balance each other to some extent. Figure 16 (c) shows
the relation between the depth error and elevation an-
gle at the fixed distance. If we assume that the target

points are at 5m distance from the camera, the depth

errors for the same disparity error vary by 5∼10% in

the range 30◦∼150◦ of elevation angle and rapidly in-
crease towards the poles. The depth in this experiment
is not z-depth in the Cartesian coordinate but radial

distance in the spherical coordinate.
In the following experiments, we reconstruct models

only for the range of 30◦∼150◦. In practice, the regions

around the poles are not normally meaningful because
0◦∼30◦ is the sky region in outdoor scene and the tripod
is captured in 150◦∼180◦.

6.3 Evaluation of scene reconstruction against
ground-truth LIDAR data

For objective evaluation of 3D reconstruction from spher-
ical image pairs, we use two scenes reconstructed from

image pairs captured at three different locations and
compare the models with ground-truth models scanned
by a LIDAR sensor. Figure 17 shows the ground-truth

models and the reconstructed models from single/multiple
viewpoints by the proposed algorithm. The “Gate” has
width of 9m and height of 6m, and the “Cupola” is

6.2m×3.8m. Both objects are around 6m apart from
the central capture point and stereo pairs are captured
with a baseline of 60cm and resolution of 12574×5658.

The “Gate” model was captured from 3 different points
and the “Cupola” was from 2 points. The reconstructed
model shows fine structure with details of the surface

relief pattern. The multiple stereo reconstruction recov-
ers self-occluded regions while maintaining the surface
details of individual captures.

Direct comparison of the accuracy and completeness
of reconstructed meshes is difficult because the recon-
structed regions and areas are different as shown in Fig.

17 (even the model from the LIDAR scan does not have
complete structure.). Therefore we produced Z-depth
maps from arbitrarily chosen viewpoints and measure

an average depth error for common regions. Table 3
shows evaluation results from two different viewpoints
for each model and Fig. 18 shows examples of errors

mapped into gray scale. In Table 3, we can see that
the multiple stereo reconstructions have slightly better
results than single stereo reconstruction. This is a bit

more obvious in the slanted view (Viewpoints 2) than
the frontal view (Viewpoints 1). However, the differ-
ences are not remarkable because most of the errors in

Table 3 are from the vertical self-occlusions as seen in
Fig. 18. The vertical self-occlusions could not be recov-
ered in this experiment because: (1) the test models

were captured only from horizontally scattered loca-
tions, (2) the ground-truth LIDAR data was scanned
at 23m from the main objects while the spherical view

was captured at 6m from the objects. Therefore, there
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(a) Gate

(b) Cupola

Fig. 17 Reconstructed models (Left: Ground-truth by LIDAR scan, Middle: Reconstruction from a single stereo pair, Right:
Reconstruction from multiple spherical stereo pairs)

is a limitation in producing sharp planes parallel to the
depth-direction from spherical images because of rel-
atively large FOV. Another point to be considered is

that this comparison was performed only for commonly
reconstructed regions. As seen in Fig. 17 (a), the multi-
view reconstruction could complete lower walls where

single-view reconstruction could not due to occlusion.

6.4 Multi-viewpoint reconstruction and free-viewpoint
rendering

For full outdoor scene reconstruction, we captured mul-

tiple spherical stereo pairs of scenes and reconstructed

3D models using the proposed algorithms. Fig. 19 shows
capture points and images of four scenes “Cathedral”,
“Carpark”, “Highstreet” and “Quarry” for experiments

in this section. Red points in the first row show spheri-
cal stereo capture points and the blue lines are normal
still image capture paths for SfM-based reconstruction

methods. The Cathedral scene is composed of one main
building and surrounding open areas. The main build-
ing has a complex structure with many self-occlusions

and complicated details such as sculptures. The Carpark
scene has more occlusions by cars and there is relatively
few overlapping regions between image 1 and 3. The

Highstreet scene covers a street of 150m with 7 image
pairs and includes reflections on windows and change of
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(a) Depth from the viewpoint 2 of “Gate”

(b) Depth from the viewpoint 2 of “Cupola”

Fig. 18 Depth errors (Left: Ground-truth depth in common regions, Middle: Depth error of single view reconstruction, Right:
Depth error of multi view reconstruction)

Table 3 Depth error evaluation (unit: cm, σ: standard deviation)

Gate Cupola
Viewpoint 1 Viewpoint 1 Viewpoint 1 Viewpoint 1
(frontal) (Fig.18) (frontal) (Fig.18)
mean σ mean σ

Single-view 5.32 14.15 1.81 21.52 3.75 19.85 5.27 28.30
Multi-view 4.78 16.02 1.10 19.72 3.21 16.52 4.45 23.67

Table 4 Comparison with SfM-based methods

Carpark Cathedral
Resolution # of input # of output Running # of input # of output Running

images vertices time (min) images vertices time (min)
Arc3D 2272×1704 50 5,995,192 372 92 6,389,091 855
Bundler

2272×1704 50
50,888 47

92
155,295 115

PMVS 113,107 72 221,076 152
Poisson 119,838 80 238,829 168
Proposed 6284×2794 4 443,544 225 6 747,157 287

lightings. The Quarry scene was captured in more dev-

astated area with less features and covers 30m×30m
with 4 image pairs.

One of the most serious problems in stereo matching

for building scenes is reflection or transparency of win-
dows. Real scenes include non-Lambertian surfaces and
different specular reflections on the surface in the stereo

image pair which induce errors in disparity estimation.
Moreover, the scenes reflected on the glass come from
farther away than the real position of the windows and

result in false depth for the glass. A grammar-driven
approach can be a solution for window detection (Si-
mon et al., 2011; Mathias et al., 2011). However, the

grammar-based approach has a problem that semantic

segmentation is not always stable, and this approach

works only within the given rule and categories. Any
object or building outside of the given categories may
induce errors in reconstruction. Therefore we manually

corrected the initial disparity values for windows, re-
flection, lens flare regions and marked as occlusion. We
also removed pedestrians and marked corresponding re-

gions as occlusions. For the marked occlusion regions,
we set the weighting term h(·) in Eq. (10) to zero so
that only disparity field smoothing is performed for the

regions in disparity estimation.

We first compared the reconstruction results with
other SfM and MVS-based methods. We captured the

Carpark and Cathedral scenes with a normal camera
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(a) Cathedral (b) Carpark (c) Highstreet (d) Quarry

Fig. 19 Multiple outdoor capture with spherical camera (Top: capture points on maps (from http://maps.google.com), Bottom:
Top images of captured stereo pairs)

and tried to reconstruct 3D models using ARC3D (Ver-

gauwen and Gool, 2006), Bundler (Snavely et al., 2008),
PMVS (Furukawa and Ponce, 2010), and Poisson re-
construction (Kazhdan et al., 2006) algorithms. The

ARC3D is a web-based 3D reconstruction service run-
ning on a server connected to a cluster of computers.
This estimates the camera parameters, as well as dense

depth maps for the uploaded images. Bundler produces
camera parameters using feature matching and 3D points
clouds of scene geometry by triangulation. PMVS uses

the camera parameters from Bundler and produces a
more dense point cloud using multi-view stereo match-
ing. Finally, the Poisson reconstruction builds a mesh

model from the oriented points clouds.

Bundler was run on a Intel Core 2 Duo 3.0GHz

Linux machine with 4G RAM, PMVS and Poisson re-
construction on a Intel Core i7 2.93GHz Windows ma-
chine with 16G RAM, and the proposed algorithm on a

Intel Xeon 3.0GHz Linux machine with 32G RAM. We
could not run the proposed algorithm with the max-
imum resolution (12574 × 5658) because of memory

overflow. We used half resolution images for this exper-
iment. Table 4 shows comparison of the SfM and MVS
methods and the proposed method, and Fig. 20 and

21 show reconstructed geometry. In Table 4, running
times for Bundler, PMVS and Poisson are accumulated
because the PMVS requires output of the Bundler as in-

put, and the Poisson reconstruction also requires point

clouds from the PMVS. We could not measure running

time for the ARC3D so the figure in Table 4 show the
time for getting response from the server. Most time
in running the proposed algorithm is used to extract

floating-point disparity fields for high resolution im-
ages because the computational load is proportional to
O(N2). Though it took more time than the SfM-based

methods, we can see that the proposed method gener-
ated much denser points from a smaller dataset. The
ARC3D generated more vertices, but we can see that

most of them are concentrated on specific regions or
outliers. The numbers of vertices by the proposed algo-
rithm shown in Table 4 are only for parts of the scene

which the SfM-based methods could reconstruct. The
whole scene reconstructed by the proposed method cov-
ers the full 360◦ and produced 856,549 and 1,203,990

vertices for the Carpark and Cathedral, respectively.
We tried to reconstruct a full 360◦ scene with the SfM-
based methods. However, this failed with 50 input im-

ages due to the lack of overlap and feature matching
between images, and also failed with 200 input images
of the same scene because of the required memory for

computation.

Figure 20 and 21 show the performance of the pro-

posed system over the SfM and MVS methods. The
first row shows reconstructed 3D point clouds for each
method and the second row is mesh structure from the

points. ARC3D failed to reconstruct the Carpark scene
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except the right wall. It shows better result for the

Cathedral but it still includes many outliers. Bundler
produced very sparse point clouds and it is hard to in-
fer the geometry of the Carpark. PMVS produced bet-

ter results but included many outliers and results in
a bumpy surface in Poisson reconstruction. We can see
that the proposed method generated full geometry with

accurate details except for occluded regions. Texture
mapping can be performed with UV mapping because
the estimated depth is aligned with the texture images.

Fig. 22 shows snapshots of the rendered scenes from
the reconstructed models with a virtual camera. The
results show natural-looking geometry and textures of

the environments. The Highstreet scene in Fig. 22 (c)
was reconstructed from seven pairs of extremely sparse
camera captures. It covers a street of 150m and the

average distance between cameras is 22m. Therefore
some geometry and texture distortions are observed
around the joins between partial models. The quarry
scene in Fig. 22 (d) has less features but the recon-

structed model shows good geometrical structure of the
scene. Free-viewpoint video of the reconstructed models
is available from: http://www.youtube.com/watch?v=

x3KdI8ZWZiQ

7 Conclusions

A system for 3D environment modelling using multi-

ple pairs of spherical stereo images has been presented.
The environment is captured by a line scan camera as
vertical stereo pairs of spherical images at multiple lo-

cations. 3D mesh models for each stereo pair are recon-
structed using spherical stereo geometry. We proposed
a novel PDE-based disparity estimation algorithm for

reconstructing continuous depth fields with sharp ob-
ject boundaries even in occluded and highly textured
regions. A hierarchical PDE solver has been introduced

to avoid the problem of convergence to local minimum
in the PDE solution and reduce computational com-
plexity for high-resolution images. Instead of an addi-

tional camera calibration for all camera locations, 3D
rigid transforms between reconstructions for different
spherical stereo pairs are estimated by feature match-

ing and transform estimation between views. Finally a
complete 3D model of the environment is generated by
selecting the most reliable overlapping surface regions

taking into account surface visibility, surface orienta-
tions and distance from the camera centre of projec-
tion. The principal advantage of the proposed surface

selection algorithm against other surface merging al-
gorithms is to preserve surface detail in the individual
stereo reconstruction and eliminate outlier surfaces re-

sulting from occlusion.

The performance of the proposed scene reconstruc-

tion algorithms was evaluated against ground-truth from
the Middlebury stereo test bed and LIDAR scans. The
proposed algorithms show comparable performance to

the state-of-the-art methods in the general stereo cases
and produce accurate surface details with sharp depth
discontinuities in 3D reconstruction. Compared against

the ground truth models captured using LIDAR scans,
the reconstructed geometry reproduces fine details on
the surfaces and gives an average depth errors within

10cm for the whole surface at distance of 10m. Analy-
sis of the errors in spherical stereo reconstruction shows
that the depth errors are stable in the range of 30◦∼150◦

vertical angle. The models for various outdoor scenes
were reconstructed and compared with the results from
state-of-the-art SfM and MVS-based approaches using
relatively large image sets. The proposed approach gen-

erates more complete mesh models from a relatively
small set of input images. Comparison also shows that
the reconstructed models can be rendered from a wide

range of viewpoints with high quality textures.

At the current stage, the biggest problem of the pro-
posed system is memory handling because of the high

resolution stereo image pairs which generate a large
number of vertices. The resulting model size is also
proportional to the number of capture points. Future

research is investigating extraction of structured mesh
model representations which have a hierarchical mesh
structure to efficiently approximate the scene surfaces

to a required level of geometric accuracy.
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