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Abstract
A method based on wavelet packet best basis decomposition (WPBBD) is investigated for the
purpose of extracting features of electroencephalogram signals produced during motor
imagery tasks in brain–computer interfaces. The method includes the following three steps.
(1) Original signals are decomposed by wavelet packet transform (WPT) and a wavelet packet
library can be formed. (2) The best basis for classification is selected from the library.
(3) Subband energies included in the best basis are used as effective features. Three different
motor imagery tasks are discriminated using the features. The WPBBD produces a 70.3%
classification accuracy, which is 4.2% higher than that of the existing wavelet packet method.

1. Introduction

Unilateral limb motor imagery can produce changes in
the electroencephalogram (EEG) signal, notably in the
sensorimotor cortex contralateral to the limb. These variations
can be detected over some specified frequency bands, such
as µ rhythm (8–12 Hz) or β rhythm (18–26 Hz) [1].
Different motor imagery tasks can produce different EEG
patterns. Recognizing these EEG patterns can help people
with severe motor disabilities to acquire alternative methods
for communication and control, which is one of the intentions
of EEG-based brain–computer interfaces (BCIs).

BCIs that are based on the motor imagery EEG have
the advantages that they do not need external stimulus and
the production of signals is dependent only on thinking
[2]. Therefore, these kinds of BCIs are adopted by many
researchers. The accurate recognition of the EEG pattern
is a key problem for the realization of the BCIs. The
recognition procedure mainly includes the feature extraction
and the classification, in which the feature extraction plays an
important role for the classification. This paper mainly focuses
on the feature extraction.

At present, feature extraction methods for the motor
imagery EEG mainly include the following. (1) Fast Fourier
transform (FFT): in [3, 4], the Fourier spectral features were

computed with the Welch method using windowed Fourier
transforms of signal segments. The main disadvantage of
this method is that it uses only the frequency information
and does not use time domain information. However, the
research shows that the combination of frequency information
and time domain information can improve the classification
performance of the EEG signal [5]. (2) Autoregressive (AR)
model: from the AR spectrum, band power was calculated
in several frequency bands and the power sum was used as
an independent variable [6–8]. In addition, the AR model
coefficients or multivariate autoregressive (MVAR) model
coefficients were used as features [9–12]. (3) Time–frequency
(TF) analysis: Wang et al used the TF analysis as a useful
tool for oscillatory EEG components during motor imagery
[13, 14]. As we all know, oscillatory EEG components
produced during motor imagery are both time and frequency
related. So the method obtained promising results. However,
oscillatory EEG components may cause simultaneous shifts
in slow cortical potentials. A combination of two correlated
signals might be used to increase the extracted information.
The TF method considers only oscillatory EEG components.
(4) Wavelet transform and wavelet packet transform (WPT):
in [15], raw EEG signals were decomposed using wavelet
transform and then event-related (de)synchronization patterns
were extracted from symmetric electrode pairs. The weighted
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energy difference of the electrode pairs were used as features.
In [16, 17], raw EEG signals are decomposed using the WPT
and subband energies at the last decomposition level were used
as features.

Due to the non-stationary property of EEG signals,
traditional analysis methods such as the Fourier transform are
not very suitable for this work. Wavelet transform and WPT
use fast decaying kernel functions, which may better represent
and analyze the signals. WPT can be viewed as a generalized
version of the wavelet transform and it was also demonstrated
to outperform other methods for the feature extraction of EEG
signals [16, 17]. However, the wavelet packet decomposition
includes multiple bases and different bases will result in
different classification performances. The selection of the best
basis which can provide the ‘best’ classification performance
for a specified signal is very important.

The existing WPT method in BCIs uses only subband
energies at the last decomposition level but does not depend
on the best basis and so it cannot ensure the best classification
performance. This paper discusses a feature extraction method
based on wavelet packet best basis decomposition (WPBBD).
The experimental results show that the WPBBD method yields
significantly higher classification accuracy than that obtained
by previous wavelet packet decomposition without best basis
(WPNBBD).

2. Experimental data

Six healthy subjects (three male, three female; age range: 22–
34 years; average age = 27 years) who had no experience of
BCIs participated in the experiment. All the subjects were
right handed. The subjects were seated in a shielded room
with dim lighting. A 32-channel elastic electrode cap was
used to record EEG. Measurements were made with reference
to electrically linked mastoids, A1 and A2. The data were
recorded at a sampling rate of 100 Hz with ESI-128, a product
of NEUROSCAN Co., USA.

Each subject repeated the experiment for two sessions.
Each session comprised 5 runs with 30 trials each resulting
in a set of 150 trials. The subjects were asked to imagine
performing one of the three motor imagery tasks (playing
basketball using left hand, playing basketball using right hand,
braking using right foot) in a self-paced mode during each trial.
The number of trials for each task was equal. Each trial lasted
5.75–6.25 s (average 6 s) and consisted of three phases (shown
in figure 1): (1) a 0.75–1.25 s (random) resting phase during
which the computer screen was black; (2) a 1 s preparation
phase during which a ‘+’ fixation was displayed at the center
of the computer screen; (3) a 4 s motor imagery task phase
during which the subjects performed the corresponding motor
imagery task according to the direction of the arrow (a left
arrow indicating imagining left hand, a right arrow indicating
imagining right hand, a down arrow indicating imagining right
foot). The arrow was displayed during the first 1 s of the 4 s
task phase and the computer screen was black during the other
3 s. The data during the last 4 s of each trial were used to
perform off-line analysis.

0.75s–1.25s
 resting phase 

1s preparation 
    phase 

4s motor imagery
task phase 

Figure 1. Three phases of a trial (a resting phase, a preparation
phase and a task phase).

It should be pointed out that these skillful tasks (playing
basketball and braking) may involve more activity in the
supplementary motor area (SMA) related with the planning of
movements, and these activities can make the classification of
EEG signals during motor imagery tasks more difficult. Even
so, we still adopt them considering the following reasons. (1)
Almost everyone has had the experience of playing basketball
and braking, so they are familiar with this motor imagery
task and so they can imagine these movements easily. A task
familiar to subjects can also shorten their training time. (2)
These motor imagery tasks are interesting, so subjects can
easily concentrate their attention to fulfill them. (3) Though
these mental tasks need skills, they will become easy after
subjects master them.

3. Method

3.1. Wavelet packet transform

The wavelet transform splits the original signal into two
subspaces, V and W, which are orthonormally complementary
to each other, with V being the space that includes the
low-frequency information about the original signal and W
including the high-frequency information. As shown in
figure 2(a), we keep repeating the decomposition of the
low-frequency subspace V. The wavelet transform partitions
only the frequency axis finely toward the low frequency, and
the WPT is a generalized version, which also decomposes
the high-frequency bands that are kept intact in the wavelet
transform. WPT leads to a complete wavelet packet tree, which
is shown in figure 2(b), where S(0, 0) denotes the original
signal space, S(j, k) denotes the decomposed subspace, j is
the decomposition level and k is the index of the subspace
occurring at the jth level.

Let us denote S(j, 0) = Vj and S(j, 1) = Wj ; the
WPT offers many alternative signal decompositions. Let
G = {Xi, i = 1, 2, 3, . . .} be the set of all valid wavelet
packet decompositions, such as S(0, 0), S(1, 0) ∨ S(1, 1),
S(2, 0) ∨ S(2, 1) ∨ S(1, 1), etc. G constitutes the wavelet
packet library and every valid decomposition Xi is called
a wavelet packet basis. A valid basis Xi requires that
the corresponding subspaces completely cover the entire
horizontal ‘range’ without vertical overlap. The WPBBD
selects the best basis X∗ for the specified signal based on
a certain criterion to provide the ‘best’ signal classification.
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V0

V1               W1

V2          W2

 V3   W3

S(0,0)

S(1,0)                       S(1,1)

S(2,0)           S(2,1)          S(2,2)        S(2,3) 

S(3,0)  S(3,1)   S(3,2)  S(3,3)   S(3,5)   S(3,6)  S(3,7)

(a) WT (b) WPT

S(3,4) 

Figure 2. The structures of WT (a) and WPT (b).

3.2. The best basis algorithm

The best basis selection is based on a certain criterion which
is used to measure the suitability of a wavelet packet basis.
The criterion is purpose dependent. Although entropy is a
good measure of information cost, it is suitable for measuring
compression effect and may not reflect the classification ability
of a wavelet very well [18]. For classification, a basis through
which we can maximally separate different classes in the
dimensional space is the best one. Therefore, the separability
‘distance’ among classes should be used to measure the
efficiency of a basis. We adopt local discriminant basis (LDB)
as a criterion, which is developed by Saito and Coifman [18].
The LDB selects from among the energy distributions of signal
classes. The goal is to search for an optimal basis X∗ among
the wavelet packet library G with the maximum classification
distance.

Formally, consider a c class classification problem in
which X = {(xk, ωk), k = 1, 2, . . . , N} is a set of Nclass-
labeled training patterns where xk ∈ Rn and ωk ∈ �,
� = {1, 2, . . . , c, . . . , C}. Let Nc be the number of signals
belonging to class c, so that we have N = N1 + · · ·+NC . In the
WPD, we denote Wj,k,l

(
x

(c)
i

)
as the decomposition coefficients

of class c signal x
(c)
i at subspace S(j, k), where l is the index

of the location of decomposition coefficients. Suppose the
dimension of signals is n = 2n0 , then l = 0, 1, . . . , 2n0−j − 1.
The best basis X∗ can be expressed as

X∗ = arg max H(S(j, k))
S(j,k)∈G

, (1)

where

H(S(j, k))
�=

C−1∑
c=1

C∑
m=c+1

D(e(c)(j, k), e(m)(j, k)), (2)

e(c)(j, k) = [e(c)(j, k, 1); e(c)(j, k, 2)

; . . . ; e(c)(j, k, 2n0−j − 1)], (3)

e(c)(j, k, l)
�=

NC∑
i=1

(
Wj,k,l

(
xc

i

))2
/ NC∑

i=1

∥∥xc
i

∥∥2
. (4)

H(S(j, k)) is called the discriminant power of the subspace
S(j, k), e(c)(j, k) is the normalized energy vector of class c

and D is the Euclidean distance. The best subspace can be
determined according to the value of H(S(j, k)).

3.3. The procedure of feature extraction

The WPBBD feature extraction can be performed according
to the following steps.

(1) Select a wavelet function and specify the decomposition
level.

(2) Select one of the EEG channels for analysis.
(3) Select a sample from a training set X.
(4) Decompose the sample to the specified level using the

selected wavelet.
(5) Repeat steps 2–4 for all training samples.
(6) Calculate the discriminant power for each subband

according to (2) and (3).
(7) Select the best basis X∗ using the bottom-up search

strategy.
(8) Calculate subband energies contained in the best basis X∗

and select these energies as features.
(9) Repeat steps 2–8 for all channels.

(10) Combine the features from all EEG channels to form
feature vector F .

It should be noted that the number of features the WPBBD
selects depends on the number of subbands that constitute
the selected best basis. In this paper, we mainly focus on
the feature extraction. As for the classifier, we use the
probabilistic neural network (PNN) as our classifier. By virtue
of easy training and a solid statistical foundation in Bayesian
estimation theory, the PNN has become an effective tool for
solving many classification problems [19]. In the PNN, we
take the value of the spread of the radial basis function as
1.0. The general flow chart of the WPBBD feature extraction
method is shown in figure 3.

4. Results and discussion

4.1. Results

The aim of the analysis is to differentiate among three different
motor imagery tasks described in section 2 and so to recognize
the human’s different intentions. Considering the practicality
of BCI systems, we use a few electrodes (C3, C4, P3, P4, O1
and O2 electrodes over the primary sensorimotor cortex). It
should be noted that these few electrodes are selected because
our cognitive tasks mainly activate local cortical areas below
these electrodes and so these few electrodes represent more
useful information than other electrodes [20]. In addition,
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Training 
samples 

Decomposition  
to the specified level

Calculate the 

discriminant power 

of each subband and 

find the best WP 

decomposition 
*X

Calculate subband 

energies in 
*X

and use them as 

features 

Test 
samples 

Decompose using 
*X

Calculate subband 

energy in 
*X

PNN
Classifier

Figure 3. The general flow chart of the WPBBD feature extraction.

all the six subjects use the same set-up of electrodes though
the classification accuracy can be increased when optimized
electrode selection is applied to each subject. The reasons that
the same set-up of electrodes is maintained for each subject in
this paper are as follows: (1) the main purpose of this paper
is to describe a feature extraction method; (2) we want to verify
the generalization of the feature extraction method under the
condition that all subjects use the same set-up of electrodes.
The optimized electrode selection for each subject will be
studied in the following work.

Meanwhile, in order to test the generalization of the
established model, we establish a uniform model for all
subjects although it may not be very reasonable. In this
three-class classification problem, there are 1800 samples for
all subjects (each class with 600 samples). We randomly
select one third of samples from each class for training and the
remaining for test. The following schemes are adopted.

(1) WPBBD: according to the feature extraction procedure
described in section 3, we first use the typical ‘db4’
Daubechies wavelet to decompose the training set into
five levels. The 100 Hz sample rate and five-level
decomposition result in a 1.5625 Hz frequency resolution.

Figure 4 shows the best basis X∗ from each channel.
The subband energies in X∗ from all the six channels form
the feature vector F . The dimension of F is (the numbers
of subbands from C3, C4, P3, P4, O1 and O2 are 17, 9,
12, 12 and 16, separately) 66.

(2) WPNBBD: this method is introduced in [17]. Similar to
the WPBBD, the difference between the WPBBD and the
WPNBBD is that the latter does not adopt the subband
energies contained in X∗ but the energies contained in the
last level. So, the dimension of the feature vector F is
192 (32 (features per channel) × 6 (channels)).

(3) AR model: in this paper, we use AR model coefficients as
features. The linear AR model for a discrete process or
signal x(n) is then

x(n) =
N∑

k=1

akx(n − k) + e(n), (5)

where N is the model order and e(n) is the noise term.
The coefficients ak can be solved. The most serious
disadvantage of the AR method is the problem of selecting
the proper model order. There is no good way to determine
the model order and so we take N = 3, 4, 5, 6, 7. Then,
the corresponding number of features can be obtained
from each EEG channel. The dimensions of the feature
vector F are 18, 24, 30, 36 and 42 (six EEG channels).

The feature vector F is fed into the PNN classifier. The
classification accuracies are obtained by ten cross-validations
so that the classification accuracies become more stable. A
number of well-known wavelets are considered in this study:
Haar, Daubechies (db4, db6), Symlet (sym4, sym8). Figure 5
plots the average classification accuracies of the WPBBD
and WPNBBD methods for test samples using different
wavelet functions. The average values of classification
accuracies obtained by all wavelets are 70.3% with the
WPBBD and 66.1% with the WPNBBD. The variances of
classification accuracies with the WPBBD and WPNBBD
methods are 1.25% and 1.31%, respectively. The AR method
obtains 58.9%, 57.5%, 61.4%, 62.6% and 60.8% classification
accuracies under the above different model orders. The
average classification accuracy of all model orders using the
AR method is 60.2%.

4.2. Discussion

It can be seen from section 4.1 that the WPBBD, the
WPNBBD and the AR model obtain 70.3%, 66.1% and 60.2%
classification accuracies, respectively. The proposed WPBBD
yields the best performance among the three methods. We
can also see that the WPBBD obtains significantly higher
classification accuracy than the WPNBBD method although
the variances obtained by them are very close. In addition, the
WPBBD uses fewer features than the WPNBBD.

In the present study, we have demonstrated that the
WPBBD is an efficient way for the feature extraction of the
motor imagery EEG signal. First, the WPT is an excellent
signal analysis tool, especially for non-stationary signals. Due
to the non-stationary property of EEG signals, the WPT is
very appropriate to analyze the EEG signal, which has also
been demonstrated in [16, 17]. Second, the WPT offers
many alternative signal decompositions and includes multiple
bases. Different bases can result in different performances.
The WPBBD uses the best basis algorithm to search for the
best basis which can produce the best performance. The
best basis selection provides the basis for obtaining excellent
classification results. The classification results comparing the
WPBBD with the WPNBBD also prove the effectiveness of
the best basis method.

Compared with the WPT, the FFT and the AR are used
to analyze the stationary signals and so cannot obtain good
performance when they are used to analyze the non-stationary
signals, such as EEG. Our experimental results show that
the WPT is superior to the AR model. In addition, the TF
analysis is used to analyze the EEG signals during motor
imagery in [13, 14]. In the TF method, raw EEG signals
are filtered by the Laplacian method and then the filtered EEG
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Figure 4. The best basis of each channel (the shadowed subbands represent the best basis).
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Figure 5. Classification accuracies obtained by different wavelet
functions (1: Haar; 2: db4; 3: db6; 4: sym4; 5: sym8).

signals are decomposed into some band bins with band-pass
filters. The corresponding envelopes of EEG in each band
are down-sampled to form features. The TF method obtains
a promising result due to the following reasons. (1) Spatial
filters are used as a means of accentuating localized activity and
reducing diffused activity, which is favorable for the feature
extraction. (2) The combination of time domain information
and frequency information can provide better classification
performance than using any one of them. The WPT is a
good time–frequency analysis tool and in our research we will
continue to use the WPT as an analysis tool. In addition,
we will adopt some advantages of other methods, such as the
Laplacian filter technique used in the TF method. It should
also be pointed out that the wavelet packet best basis varies
between subjects and so the specific best basis for each subject
can further improve the classification performance.

5. Conclusion

In this paper, the WPBBD feature extraction method for
classifying EEG signals during the motor imagery tasks is
investigated. The WPT yields a redundant representation
of the signal and its over-complete structure provides the
flexibility for features’ representation to achieve better
accuracy. We adopt the distance criterion to select the best
basis for EEG signals. A signal can be better represented
with the best basis than without the best basis. The
experimental results show that the WPBBD outperforms
the previous WPNBBD method. The WPBBD provides a
more suitable feature extraction method for EEG-based BCIs.

We will continue to study the best basis fitted for each
subject separately, which is expected to further improve the
classification accuracy.
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