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Abstract— In this paper, an on-line drowsiness detection al-
gorithm using a single electroencephalographic (EEG) channel
is presented. This algorithm is based on a means comparison
test to detect changes of the alpha relative power ([8-12]Hz
band). The main advantage of the method proposed is that the
detection threshold is completely independent of drivers and
does not need to be tuned for each person. This algorithm,
which works on-line, has been tested on a huge dataset
representing 60 hours of driving and give good results with
nearly 85% of good detections and 20% of false alarms.

I. INTRODUCTION

Drowsiness is the transition state between awakening and
sleep during which a decrease of the vigilance, i.e. the
capacity of keeping oneself attention on a task, is generally
observed. This can be a serious problem for tasks that
need a sustained attention, such as driving. According to
a report of the American National Highway Safety Traffic
Administration (NHSTA) [1], driver drowsiness is annually
responsible for about 56,000 crashes which is the reason
why more and more researches are made to build automatic
detectors of this dangerous state.

This paper proposes a drowsiness detection algorithm
using a single EEG channel based on a means comparison
test. In a first section, a brief state of the art on automatic
detection using physiological information is made. Then,
the method is presented in section III. Finally, the results
obtained on a significant database of EEG recordings from
drowsy drivers are shown and discussed.

II. STATE OF THE ART

Electroencephalography measures the electrical activity
of the brain from electrodes placed on the scalp. EEG is
described in term of rhythmic activity and transients. The
rhythmic activity is divided into frequency bands: delta (δ)
activity ([0.5-4]Hz), theta (θ) activity ([4-8]Hz), alpha (α)
activity ([8-12]Hz), beta (β) activity ([12-26]Hz) and gamma
(γ) activity (over 26Hz). Most of the time, only the range
[1-20]Hz is used because activity below or above this range
is likely to be artifactual (under standard clinical recording
techniques).

Drowsiness is characterized by an increase of α and θ
activities, predominantly in the posterior region of the brain,
and a slowdown of blinks and eye movements [3]. Different
scales of drowsiness classification exist but there are no
standardized rules to differentiate the levels of drowsiness (as
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TABLE I
OSS CRITERIA

Objective sleepiness α and θ Blinks and eye
score cumulative duration movements

0 negligible Normal
1 less than 5s Normal

less than 5s Slow
2 or

less than 10s Normal
less than 10s Slow

3 or
more than 10s Normal

4 more than 10s Slow

the Rechtschaffen and Kales rules [2] for the study of sleep).
This may be due to the quite recent interest on drowsiness
compared to the sleep analysis.

There are two kinds of scales: subjective sleepiness scales
like the Karolinska Sleepiness Scale (KSS) [4] which allow
drivers to directly evaluate their own drowsiness and Objec-
tive Sleepiness Scales (OSS) which is used by expert doctors
to evaluate drivers drowsiness after driving. The OSS used
in this study is a five-level scale from 0 (awake) to 4 (very
drowsy) developped by Muzet [3]. Decisions are made every
20s and depend on the length of α and θ bursts as well as
on the speed of eyes movements and blinks. The different
criteria are presented in table I.

Most of drivers’ drowsiness automatic detection methods
are vehicle-oriented, studying the vehicle behavior to detect
abnormal doings [5], or face-oriented, using video to detect
blinks and head movements [6], [7]. Physiological studies
on drowsiness are based on EEG analysis and only a few
are about real-time monitoring systems. The EEG power
spectrum is used to evaluate the activity in each band. De
Waard [8] suggests to monitor the ratio α+θ

β to estimate
the drowsiness level. The EEG power spectrum can also be
used to train neural networks [9], [10]. The point is that
methods based on neural networks need a huge expertized
database to train the network. More recent studies are based
on Independent Component Analysis (ICA) [11], [12]. ICA
methods need to have a large number of EEG channels but
allow the spatial shifting of the different bands activities to
be tracked which bring new information in addition to the
EEG power spectrum.

The method described in the following section uses the
EEG power spectrum to detect bursts in the EEG activity
and to estimate if the driver is drowsy or not.
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III. DROWSINESS DETECTION METHOD

The principle of the detection method is shown on Fig. 1.
First the EEG power spectrum is computed using a Short

Fig. 1. Drowsiness detection method

Time Fourier Transform (STFT) to calculate the relative
energy into the different EEG bands every second. Then, the
relative energy is median filtered using a sliding window to
reject abnormal values. A Means Comparison Test (MCT)
is at last computed to compare the energy to a reference
level, learnt at the beginning of the recording. As the MCT
is normalized, experiment will help to determine a common
threshold of detection.

A. EEG Power Spectrum

The EEG power spectrum is computed using a STFT. The
power spectrum is computed on the two past seconds using
Welch’s periodigram method, with an overlapping window
of 1s [13]. It is computed every second. Then, the relative
power of each band is calculated. For example the α relative
power is calculated as following:

αrelative power =
αpower

EEGpower
,

the relative powers in the bands θ and β are calculated by
similarity. The relative power in the bands α, θ and β will
be respectively named αrel, θrel and βrel.

B. Median filtering

Median filtering is used to smooth the αrel., θrel. and
βrel signals and to reject abnormal values. The median is
the value separating the higher half of a population from
the lower half. Here, the median of the relative powers is
calculated every second, before performing MCT, using a
sliding window of 10s.

C. Means Comparison Test

The method of MCT is inspired by [14] and is applied
on the relative powers in the α, θ and β bands. A moving
window is compared to a fixed reference window as shown
on fig. 2. The classical MCT has quite restrictive conditions
due to the fact that the theoretical variances are unknown.
Let us consider two independent populations of length n1

and n2, whose means are x̄1 and x̄2 and whose variances
are s21 and s22. Then, the variable:

t =
x̄1 − x̄2√

n1s21+n2s22
n1+n2−2 ( 1

n1
+ 1

n2
)

(1)

follows a n1+n2−2 liberty degrees Student law. The equality
of the two means can be tested by a bilateral test with a
confidence threshold λ: −t1−λ/2 < t < t1−λ/2.

Fig. 2. Illustration of the windows for the MCT

If the two populations have the same length n (i.e. n1 =
n2 = n) and their theoretical variances are equal, (1) can be
formulated as:

t =
x̄1 − x̄2√
s21+s

2
2

n−1

(2)

So, the variable t follows a n − 1 liberty degrees Student
law.

Moreover, if the populations are large enough, i.e. if n1

and n2 are equal or greater than 20, the test is performed
with the variable:

u =
x̄1 − x̄2√
s21
n1

+ s22
n2

(3)

which then follows a centered reduced normal law. The
means equality is then tested by a bilateral test with a con-
fidence threshold λ: −u1−λ/2 < u < u1−λ/2. Furthermore,
the theoretical variances equality is not longer necessary.

Here, the test is computed on the relative power signals
calculated every second. The length of the fixed reference
window is n1 = 60s and the one of the moving window is
30s with 29s overlap. The threshold λ fixes the percentage
of false alarms expected. The higher the threshold, the lesser
the percentage of false alarms. In this study, λ is empirically
chosen and discussed in section IV.

D. Method relevance

The reference is calculated on a fixed window chosen
at the beginning of the signal, supposing that the driver is
completely awake when he starts driving. So, the mean cal-
culated on the moving window is compared to a wakefulness
reference. If the bilateral test is higher than the threshold, the
driver is then considered as drowsy.

A big problem with EEG analysis is the occurrence
of artifacts. Artifacts are perturbations of the EEG signal
due to patient movements such as ocular movements or
measurement devices such as electrode disconnections. High-
amplitude artifacts pollute the EEG signals and give isolated
high abnormal values on the whole EEG band of the power
spectrum. The median filter is used to reject this values to
avoid false detection.

The point with detecting α or θ bursts in EEG signal is
the difficulty to define a common threshold for all drivers
because of the large inter-individuals differences [16]. Here,
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the level of αrel and θrel power in the awake state is learned
on each driver from the reference window. Moreover, the
output of MCT is a variable following a centered reduced
normal law. So, the threshold used in the bilateral test has
statistical meaning and is the same for all drivers.

At last, the whole algorithm can be applied on-line.
However, the sliding window of 10s used for median filtering
induces a delay of 5s and the sliding window of 30s used
for the MCT induces 15s. So, the decision provided by
the algorithm is delayed by 20s from the signals recorded.
This delay in the decision will be taken into account when
comparing the results to the expert’s decisions.

IV. RESULTS AND DISCUSSION
A. Database

The database used for the evaluation of the method is
composed of 40 recordings from twenty subjects. Subjects
were tested on the moving base driving simulator PAVCAS
(“Poste d’Analyse de la Vigilance en Conduite Automobile
Simulée”). Each subject was recorded while driving for 90
minutes, a first time perfectly rested and a second time
suffering from sleep deprivation (the subject had slept for
4 hours only). The data base is thus composed of 60 hours.
Each recording includes four EEG channels (left frontal (F3),
central (C3), parietal (P3) and occipital (O1)), one EOG
channel and a video of the driver’s face. Objective sleepi-
ness was evaluated on each recording by an expert doctor
using the scale described in section II. Data acquisition
was performed at 250Hz by the CEPA (Centre d’Études
de Physiologie Appliquée), Strasbourg, FR.

B. Technical validation

The method proposed in this paper provides a binary deci-
sion [awake; drowsy] while the database is expertized using
five levels. Moreover, the expert classified non overlapping
intervals of 20s (epochs) while the automatic system made
a decision every second. To compare the results obtained
to the expert’s decision, the following validation technique
was used. The five expert decision levels were converted
into a binary decision by considering as drowsy any decision
superior or equal to 1 in the expert’s scale. Furthermore, each
20s epoch classified by the expert was directly compared to
the system decision: if during the 20s interval, the system
classified at least 1s as “drowsy”, then the decision for the
epoch was “drowsy”. Else it was “awake”.

Epochs were then compared one by one and classified
according to the contingency table II. The true positive rate
(TPrate) or detection rate is the ratio between the number
of true “drowsy” automatic decisions and the number of
“drowsy” expert decisions. The false positive rate (FPrate))
is the ratio between the number of false “drowsy” automatic
decisions and the number of “awake” expert decisions. They
are calculated according (4) and (5).

TPrate =
TP

TP + FN
(4)

FPrate =
FP

FP + TN
(5)

TABLE II
CONTINGENCY TABLE

Expert decision
awake drowsy

awake
Automatic

decision
drowsy

True Negative False Negative
(TN) (FN)

False Positive True Positive
(FP) (TP)

The results are displayed as Receiver Operating Charac-
teristic (ROC) curves [15], plotting TPrate in function of
FPrate. The purpose is to have the highest TPrate with the
lowest FPrate.

C. Results and discussion

The drowsiness detection algorithm was applied on the
whole database, with a decision threshold λ (defined in
section III.C) varying from 1.5 to 5, on each of the 4 EEG
channels. The results obtained when the MCT is applied on
the alpha relative power is presented in Fig. 3. The “star”
markers correspond to the P3 channel, the “circle” markers
to the F3 channel, the “square” markers to the C3 channel
and the “triangle” markers to the O1 channel. The head at
the bottom on the right reminds the position of each channel.
For each channel, the results represented with the marker the
further on the right corresponds to the smallest λ and with the
marker the further on the left to the biggest λ. It is coherent:
increasing λ diminishes the FPrate while decreasing the
TPrate. It is obvious from Fig. 3 that the results are much

Fig. 3. Results of the drowsiness detection algorithm on each EEG channel

better when the P3 posterior channel is used, which is in
concordance with results from the literature: drowsiness is
caracterized by an increase of α activity predominately in
the posterior region of the brain.

Fig. 4 compares the results obtained using EEG recorded
from channel P3 with MCT applied to:
• αrel (“star” markers)
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• αrel|θrel (“square” markers)
• α+θ

β (“circle” markers) suggested in [8]
• αrel (“triangle” markers) signal without the median

filter

Fig. 4. Comparison between different criteria of drowsiness detection

The best results are obtained with the drowsiness detection
algorithm applied on the αrel signal. The optimal results are
TPrate = 84, 16% and FPrate = 19, 59% with a threshold
λ = 5. However, decreasing the threshold λ from 5 to 3
does not degrade the performances (TPrate = 89, 28% and
FPrate = 25, 99% with λ = 3), which proves that the
method is not sensitive to the threshold value. The results
obtained with the αrel signal without the median filter are
good for λ = 1.5 but they quickly decrease when increasing
λ. They are very sensitive to the threshold value. So, the
median filter improves the results and make the method less
sensitive to the threshold value. Moreover, the algorithm
was tested with the same threshold on data recorded from
20 different patients, which shows that the method can be
applied on any patient without adapting the tuning parameter.

Finally, the results obtained with αrel|θrel show that the
θrel is not relevant to detect drowsiness since the number of
false positive increase tremendously when this information is
addes . In the same way, the α+θ

β ratio gives correct results
but less good than the results obtained with the only αrel
information.

At last, this detection algorithm can operates on-line in
real time, giving decisions every second. The decision delay
of 20s is not important when compared to the physician’s
decision made every 20s.

V. CONCLUSIONS AND FUTURE WORKS

An universal algorithm for the on-line automatic detection
of drivers drowsiness has been presented here. This algorithm
is based on a means comparison test applied on the EEG
relative power calculated in the alpha band. This algorithm
can operate on-line with a short delay and is tuned by a
threshold whose value is independent of the drivers. Perfor-
mances were shown not to be sensitive to significant changes

in the tuning parameter. The results obtained are 84, 2% of
good detection and 19, 6% of false detection using only one
EEG channel.

The next step of this work is to add an “eye blinks
and yawn” detection system thanks to a high frame rate
camera and to merge the decisions to obtain a highly reliable
automatic drowsiness detector.
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