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Abstract

We propose a novel method for automatic recognition of alertness level from full spectrum electroencephalogram (EEG) recordings. This
procedure uses power spectral density (PSD) of discrete wavelet transform (DWT) of full spectrum EEG as an input to an artificial neural
network (ANN) with three discrete outputs: alert, drowsy and sleep. The error back propagation neural network is selected as a classifier to
discriminate the alertness level of a subject. EEG signals were obtained from 30 healthy subjects. The group consisted of 14 females and 16
males with ages ranging from 18 to 65 years and a mean age of 33.5 years, and a body mass index (BMI) of 32.4± 7.3 kg/m2. Alertness level
and classification properties of ANN were tested using the data recorded in 12 healthy subjects, whereby the EEG recordings were not used
been used to train the ANN. The statistics were used as a measure of potential applicability of the ANN. The accuracy of the ANN was 96±
3% alert, 95± 4% drowsy and 94± 5% sleep. The results suggest that the automatic recognition algorithm is applicable for distinguishing
between alert, drowsy and sleep state in recordings that have not been used for the training.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this study was to establish a method for pro-
cessing input data from a full spectrum of (EEG) recordings
by the use of an artificial neural network (ANN) that distin-
guishes between alert and drowsy states in arbitrary subjects
by the use of DWT processed EEG signals.

EEG distinguishes between states of vigilance, that is,
wakefulness and sleep, and to some extent between the
‘levels’ of vigilance within a state. The EEG frequency
spectrum is subdivided intoδ (1–4 Hz), θ (4–8 Hz), α
(8–13 Hz),β (13–30 Hz) andγ (>30 Hz) frequency ranges.
Within NREM sleep,δ power (slow wave power) indi-
cates the intensity of sleep and represents the need for
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sleep. During wakefulness,α and θ frequencies in the
awake state EEG are of particular interest for research on
sleepiness. During active wakefulness (with eyes open),
α power is usually low unless the subject is severely fa-
tigued. However, in resting conditions (with eyes closed),
α power is also high when the subject is fully rested.
During the transition from resting conditions, with eyes
closed, to sleeping a gradual reduction ofα power and
a gradual increase inθ power occurs. Reducedα power
and increasedθ power during resting awake periods, with
eyes closed, may thus indicate a high motivation for sleep-
ing. Indeed, it was found that subjective sleepiness during
awake periods correlates negatively withα power and pos-
itively with θ power in the awake EEG during prolonged
wakefulness.

Spontaneous electrical brain activities, that is EEG sig-
nals, are dynamic, stochastic, non-linear and non-stationary
(Guler et al., 2001; Herrmann et al., 2001; Vuckovic et al.,
2002; Peters et al., 1998). The EEG recordings depend on
the location of the electrodes, their impedance and the state
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of alertness. In addition, the EEG recordings vary sub-
stantially between healthy subjects. Extensive expertise is
required to visually interpret the EEG recordings in order to
isolate and identify characteristic information from a large
amount of data. A computerized analysis of the EEG record-
ings aims to facilitate the time-consuming and difficult
visual inspection and automatically extract characteristic
features of brain activity. A computer-assisted EEG classi-
fication of drowsiness has been analyzed in several studies
(Anderson et al., 1995; Doghramji et al., 1997; Gevins
and Smith, 1999; Jung et al., 1997; Khahill and Duchene,
1999; Principe et al., 1989; Tsoi et al., 1994; Wilson and
Bracewell, 2000). The classification was based on a spectral
analysis of EEG recordings (Doghramji et al., 1997; Jung
et al., 1997) and showed that a limited number of elec-
trodes and spectral analysis of characteristic bands could
be used as a classifier. More recently, some studies (Jung
et al., 1997; Peters et al., 2001) concentrated on detecting
the information on drowsiness available from a full EEG
spectrum.Principe et al. (1989)designed a finite automa-
ton that was capable of categorizing the sleep into seven
different stages.McKeown et al. (1997)used statistical
methods for the analysis of EEG signals and detection of
vigilance changes.Pradhan et al. (1996)presented prelim-
inary results for the classification of seizure activities by
applying an ANN based on learning vector quantization.
Kalayci and Ozdamar (1995)showed that an ANN per-
forms better if the input and output data can be processed to
capture the characteristic features of the signal (Anderson
et al., 1995; Dorffner et al., 1993; Gevins and Smith, 1999;
Haselsteiner and Pfurtscheller, 2000; Peters et al., 2001;
Principe et al., 1989; Tsoi et al., 1994; Wilson and Bracewell,
2000). The combination of Fourier transform analysis of
EEG with ANN in classifying alertness and drowsiness was
previously shown to be a suitable algorithm for classifying
events from raw EEG signals (Jung et al., 1997), except
for specific conscious tasks.De Carli et al. (1999)worked
on developing an automatic procedure for arousal detection
during sleep. They tested this on a group of subjects, in dif-
ferent pathological conditions by using wavelet transform.
The aim of this study was to develop a simple algorithm to
discriminate the vigilance states, that is, wakefulness and
sleep which could also be applied to real-time.

The following reasons were the basis for improving the
methods of automatic detection of changes from alert to
drowsy, and vice versa states: (1) clinical pre-processing of
long-term recordings of wakefulness in order to select se-
quences of alert and drowsy states for further human inspec-
tion (Shimada et al., 2000); (2) online experiments, where
timing of a stimuli for cognitive evoked potential are needed;
(3) software for interactive learning (Akay et al., 1998); and
(4) warning systems for detecting the drowsiness in operator
rooms. The specific design requirement was applicability of
the algorithm to short sequences of EEG recordings, hence
plausible use in real-time. The second requirement was to
develop a simple algorithm that would work on recordings

that were not been used for the training of the same or ar-
bitrary subject.

2. Materials and methods

2.1. Subjects

In this study, EEG signals were obtained from 30 subjects.
The group consisted of 14 females and 16 males with ages
ranging from 18 to 65 years and a mean age of 33.5 years,
and a body mass index (BMI) of 32.4± 7.3 kg/m2. Subjects
with normal intelligence and without mental disorders were
included in this study after passing the neurological screen-
ing. All recordings were performed in accordance with medi-
cally ethical standards. The subjects were not sleep-deprived.
They had no deviations from their usual circadian cycle,
and they took no medicine and alcohol. Two neurologists
with extended experience of interpreting EEGs, evaluated
and rated the recordings used for this study. Each of them
inspected the EEG recordings, and then agreed which EEG
sequences clearly indicated alert, drowsy or sleepy states of
the subject.

2.2. EEG data acquisition and representation

The EEG data used in this study was taken from Medical
Faculty, Sleep Laboratory Department of Psychic Health
and Diseases. Silver-plated electrodes were used for the
recordings, and a C3-A2 standard settlement was applied
to the subject of the experiment, according to the 10–20
international electrode placement system. Measurements
were taken by using Grass Model-78 Polysomnography.
The recordings were band pass filtered between 0.3 and
70 Hz. The EEG recordings were digitized with 12-bit
resolution, at a sampling rate of 150 Hz per channel (PCI
MIO-16-E+ type) and a personnel computer as shown in
Fig. 1 (Guler et al., 2001). Eight channels of the instrument
can be used at the same time. Each channel can be gained
distinctly and has at most 1000 Hz sampling rate. Data is
taken into the computer memory quickly by using this card
which is connected to the PCI data bus of the computer.

Fig. 1. Scheme of the EEG data acquisition system.
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Each record was scored by two experts for alertness level
staging, with a link to the recording. For this system graph-
ical programming language (LabVIEW) was used as the
software development tool. The system provides real-time
data processing. Different EEG epochs have been given in
Fig. 2. The signals were recorded during the 7 h episodes
and digital signals were taken every 20 min for each block.
Then these EEG recordings were divided into 5 s epochs,
and these epochs are divided into four frequency sub-bands
asα, β, θ andδ by using DWT.

Fig. 2. Different EEG signals: (a) alert (b) drowsy (c) sleep.

2.3. Wavelet transform

The wavelet transform specifically permits to discrimina-
tion of non-stationary signals with different frequency fea-
tures (Daubechies, 1992). A signal is stationary if it does
not change much over time. Fourier transform can be ap-
plied to the stationary signals. However, like EEG, plenty of
signals may contain non-stationary or transitory characteris-
tics. Thus it is not ideal to directly apply Fourier transform
to such signals.
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The wavelet transform decomposes a signal into a set of
basic functions called wavelets. These basic functions are
obtained by dilations, contractions and shifts of a unique
function called wavelet prototype. Continuous wavelets are
functions generated from one single functionφ by dilations
and translations (Cohen and Kovacevic, 1996; Daubechies,
1996; Rioul and Vetterli, 1991).

ψa,b(t) = 1√|a|ψ
(
t − b

a

)
(1)

whereb is real valued and called the shift parameter. The
function set(ψa,b(t)) is called a wavelet family. Since the
parameters (a, b) are continuous valued, the transform is
called continuous wavelet transform. The definition of clas-
sical wavelets as dilates of one function means that high fre-
quency wavelets correspond toa< 1 or narrow width, while
low frequency wavelets havea > 1 or wider width. In the
wavelet transform,f(t) is expressed as linear combination of
scaling and wavelet functions. Both scaling functions and
the wavelet functions are complete sets (Rioul and Vetterli,
1991). However, it is common to employ both wavelet and
scaling functions in the transform representation. In general,
the scale and shift parameters of the discreet wavelet family
are given by

a = a
j

0 andb = kb0a
j

0 (2)

where j and k are integers. The function family with dis-
cretized parameters becomes

ψj,k(t) = a
−j/2
0 ψ(a−jt − kb0) (3)

ψj,k(t) is called the discrete wavelet transform (DWT) basis.
Although it is called DWT, the time variable of the transform
is still continuous. The DWT coefficients of a continuous
time function are similarly defined as

dj,k ≤ fw(t), ψj,k(t) ≥ 1

a
j/2
0

∫
fw(t)ψ(a

−j
0 t − kb0)dt (4)

When the DWT set(ψj,k(t)) is complete, the wavelet
representation of a functionfw(t) is expressed as

fw(t) =
∑
j

∑
k

< fw(t), ψj,k(t) > ψj,k(t) (5)

In general, a function can be completely represented by
using L-finite resolutions of wavelet, and the scaling function
with parameters value ofa0 = 2 andb0 = 1 as

fw(t)=
∞∑

k=−∞
cL,k2

−L/2φ(2t/L − k)

+
L∑
j=1

∞∑
k=−∞

dj,k2
−j/2ψ(2t/j − k) (6)

Where scaling coefficients [cL,k] are similarly defined as

cL,k ≤ fw(t), φL,K(t) ≥
∫
fw(t)2

−L/2φ
( t

2L
− k

)
dt

(7)

and

φL,k(t) = 2−L/2φ(2−Lt − k) (8)

ψ = 2
∑
k

h1(k)φ(2t − k) (9)

φ = 2
∑
k

h0(k)φ(2t − k) (10)

DWT analyzes the signal at different frequency bands,
with different resolutions by decomposing the signal into a
coarse approximation and detail information. DWT employs
two sets of functions called scaling functions and wavelet
functions, which are associated with low-pass and high-pass
filters, respectively. The decomposition of the signal into the
different frequency bands is simply obtained by successive
high-pass and low-pass filtering of the time domain signal.

The original signalx(n) is first passed through a half band
high-pass filterg(n) and low-pass filterh(n). After filtering,
the half of the samples can be eliminated according to the
Nyquist criteria, since the signal now has the highest fre-
quency ofπ/2 radians, instead ofπ. The signal can therefore
be sub-sampled by 2 simply by discarding every other sam-
ple. This procedure constitutes one level of decomposition
and can mathematically be expressed as follows:

Yhigh[k] =
∑

x[n]g[2k − n] (11)

Ylow[k] =
∑

x[n]h[2k − n] (12)

whereYhigh[k] and Ylow[k] are the outputs of the high-pass
and low-pass filters, respectively, after sub-sampling by 2
(Khahill and Duchene, 1999).

The above procedure, which is also known as subband
coding, can be repeated for further decomposition. At every
level, the filtering and sub-sampling will result in half of the
number of samples and half of the frequency band spends
(Khahill and Duchene, 1999).

Daubechies order 2 wavelet transform was applied to the
alert, drowsy and sleep signals.Fig. 3 shows five different
levels of approximation (identified by a1–a5 and displayed
in the left column) and details (identified by d1–d5 and dis-
played in the right column) of an EEG signal. These ap-
proximation and detail records are reconstructed from the
wavelet coefficients. Approximation a4 is obtained by su-
perimposing details d5 on approximation a5. Approximation
a3 is obtained by superimposing details d4 on approxima-
tion a4, and so on. Finally, the original signal is obtained
by superimposing details d1 on approximation a1. Wavelet
transform acts like a mathematical microscope, zooming into
small scales to reveal compactly spaced events in time and



M.K. Kiymik et al. / Journal of Neuroscience Methods 139 (2004) 231–240 235

Fig. 3. Daubechies order 2 wavelet transform of an EEG signal.

zooming out into large scales to exhibit the global waveform
patterns (Adeli et al., 2003).

The following formula can be used when frequency infor-
mation is needed instead of the scales (Adeli et al., 2003):

Fa = Fc

δa
(13)

whereFa is the pseudo-frequency corresponding to scalea,
in Hz, a the scale,δ the sampling period, andFc the center
frequency or dominant frequency of a wavelet in Hz, defined
as the frequency with the highest amplitude in the Fourier
transform of the wavelet function.Table 1presents frequen-
cies corresponding to different levels of decomposition for
Daubechies order 2 wavelet with a sampling frequency of
150 Hz. It can be seen fromTable 1 that the components
from level 5 decomposition are within theδ (1–4 Hz), level
4 decomposition are within theθ range (4–8 Hz), level 3
decomposition are within theα range (8–13 Hz), and level
2 decomposition are within theβ range (13–30 Hz). Lower

Table 1
Frequencies corresponding to different levels of decomposition for
Daubechies order 2 wavelet with a sampling frequency of 150 Hz

Level of decomposition 0 1 2 3 4 5

Scale (2i ) 1 2 4 8 16 32
Frequency (Hz) 100 50 25 12.5 6.25 3.125

level decompositions corresponding to higher frequencies
have negligible magnitudes in a normal EEG.

2.4. Neural network classifier

Three-layer feed-forward artificial neural network with
one hidden layer and one output layer as shown inFig. 4was

Input Layer Output Layer 

S2

Delta
Alert 

Theta Drowsy

Alpha Sleep 

Beta

Hidden Layer

Fig. 4. Multi-layered neural network model.
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trained using standard back-propagation algorithm. An input
vector is applied to the input layer, where all of the inputs
are distributed to each unit in the hidden layer. All of the
units have weight vectors which are multiplied by these input
vectors. Each unit sums these inputs and produces a value
that is transformed by a nonlinear activation function, for
which we used the common asymmetric sigmoid function.
The output of the final layer is then computed by multiplying
the output vector from the hidden layer by the weights into
the final layer. More summations and activations of these
units then give the actual output of the network.

The determination of appropriate number of hidden lay-
ers is one of the most critical tasks in neural network design.
Unlike the input and output layers, one starts with no prior
knowledge as to the number of hidden layers. A network
with too few hidden nodes would be incapable of differenti-
ating between complex patterns leading to only a linear es-
timate of the actual trend. In contrast, if the network has too
many hidden nodes it will follow the noise in the data due to
over-parameterization, leading to poor generalization for un-
trained data. With increasing number of hidden layers, train-
ing becomes excessively time-consuming. The most popular
approach to finding the optimal number of hidden layers
is by trial and error (Basheer and Hajmeer, 2000; Fausett,
1994; Haykin, 1994). In this study, the neural network con-
sisted of one input layer, one hidden layer, and one output
layer.

2.5. Performance indicators of the neural network

2.5.1. Measuring error
Given a random set of initial weights, the outputs of the

network will be very different from the desired classifica-
tions. As the network is trained, the weights of the system
are continually adjusted to reduce the difference between the
output of the system and the desired response. The differ-
ence is referred to as the error and can be measured in several
ways. The most common measurement is SSE and MSE.
SSE is the average of the squares of the difference between
each output and the desired output (Basheer and Hajmeer,
2000; Fausett, 1994; Haykin, 1994). In this study, SSE was
used for measuring performance of the neural network.

2.5.2. Cross-validation
Cross-validation is a highly recommended criterion for

stopping the training of a network. During performance anal-
ysis of network, cross-validation can be used for determin-
ing the final training. In general, it is known that a network
with enough weights will always learn the training set bet-
ter as the number of iterations is increased. However, neu-
ral network researchers have found that this decrease in the
training set error was not always coupled to better perfor-
mance in the test. When the network is trained too much,
the network memorizes the training patterns and does not
generalize well. The training holds the key to an accurate
solution, so the criterion to stop training must be very well

described. The aim of the stop criterion is to maximize the
network’s generalization (Basheer and Hajmeer, 2000).

We performed the following cross-validation procedure
for training the network as a way to control the over-fitting of
training data. We randomly select 13 subjects’ data set (60%
of overall data) for training the network and 5 subjects’ data
set (10% of overall data) for validation after each training
epoch. The error of the network on the validation data is
calculated after every pass, or epoch, through the training
data. After a 5416 epochs, the network state (its weight
values) at the epoch for which the validation error is smallest
is chosen as the network that will most likely perform the
best on novel data. This best network is then applied to the
remaining 12 subjects’ data (30% of overall data), referred
to as the test set. All representations were classified 30 times
using different random selections of train, validation, and
test sets and initial weight values (Sun and Sclabassi, 2000).
ANN performance was assessed on both the training and the
validation set.

2.5.3. Classification and regression
Neural networks are used for both classification and re-

gression. In classification, the aim is to assign the input
patterns to one of several classes, usually represented by
outputs restricted to lie in the range from 0 to 1, so that they
represent the probability of class membership. While the
classification is carried out, a specific pattern is assigned
to a specific class according to the characteristic features
selected for it. In regression, desired output and actual
network output results can be shown on the same graph
and performance of network can be evaluated in this way
(Basheer and Hajmeer, 2000; Fausett, 1994; Haykin, 1994).

3. Results and discussion

This study presents a method for classifying a state of vig-
ilance to alert, drowsy or sleepy states based on an ongoing
EEG for an arbitrary healthy subject. A wavelet analysis of
EEG recordings (Jung et al., 1997; Doghramji et al., 1997;
De Carli et al., 1999) was proven to be a powerful tool for
determining sleep stages and transitions from an alert to a
drowsy state. The wavelet analysis used the fact that such an
EEG comprises of a characteristic rhythm that will disappear
when the subject becomes drowsy. The statistical classifi-
cation of EEG signals (McKeown et al., 1997) could be an
effective method for classification and detection of changes
in vigilance, though it was not used for distinguishing be-
tween the alert and drowsy states.

In this study, drowsiness level from EEG signals was ob-
tained by using discrete wavelet transform (DWT) and ANN.
The signals were recorded during the 7 h episodes and dig-
ital signals were taken every 20 min for each block. Then
these EEG recordings were divided 5 s epochs as shown in
Fig. 2, and these epochs were divided into sub-bands fre-
quencies such asα, β, θ andδ by using DWT. Then power
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Fig. 5. Power spectral densities of the alert, drowsy and sleep using Daubechies wavelet coefficients: (a) alert, (b) drowsy, (c) sleep.

spectral densities (PSDs) of wavelet sub-band frequencies
δ (1–4 Hz),θ (4–8 Hz),α (8–13 Hz) andβ (13–30 Hz) are
applied to ANN. PSDs of DWT of alert, drowsy and sleep
state are shown inFig. 5.

As seen in theFig. 5which is drawn by using Daubechies
2 wavelet coefficients, alert state has mixed frequencies;α

andβ are seen. In the drowsy state, theα will disappear. In
the sleepα andβ are lostδ and θ are observed. We used

these signals as an input to ANN to classify the state of
vigilance.

3.1. Visual inspection and validation

Two neurologists with experience in the clinical analysis
of polygraphic sleep tracings independently inspected ev-
ery recording included in this study to evaluate vigilance
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changes. Each event was filed into the computer memory
and linked to the tracing with its start and duration. These
were then revised by the two experts jointly to solve any
disagreements and to set up the training set for the program,
consenting on the choice of the threshold for the alertness
level detection. The agreement between the two experts was
evaluated for the testing set as the rate between the num-
bers of alertness level detected by both experts. A further
step was then performed with the aim of checking the dis-
agreements and setting up a “gold standard” reference set
(De Carli et al., 1999). A computer program collected all
the marked vigilance states from each recording into one set
(alert, drowsy and sleepy). When revising this unified event
set, the human experts, by mutual consent, marked each state
as alert, drowsy or sleepy. They also reviewed each record-
ing entirely for vigilance states that had been overlooked by
all during the first-pass and marked them as definite or pos-
sible. This validated set provided the reference evaluation
to estimate the sensitivity and selectivity of computer scor-
ings. Sensitivity and selectivity measures are given in the
Appendix A. Nevertheless, a preliminary analysis was car-
ried out solely on events in the training set as each stage in
these sets had a definite start and duration.

3.2. Selection of network parameters

For solving pattern classification problem ANN employ-
ing back-propagation training algorithm was used. Effective
training algorithm and better-understood system behaviour
are the advantages of this type of neural network. Selec-
tion of network input parameters and performance of neural
network are important to distinguish between states of vig-
ilance, that is, wakefulness and sleep.

During training, the input and desired data will be repeat-
edly presented to the network. When using a neural network,
decisions must be taken on how to divide data into a train-
ing set and a test set. In this study, 18 of 30 subjects (70%
of overall data) were used for training and the rest of them
(30% of overall data) were used for testing. In order to ob-
tain a better network generalization 5 training subject were
used as cross-validation set. In classification, the aim is to
assign the input patterns to one of several classes, usually
represented by outputs restricted to lie in the range from 0
to 1, so that they represent the probability of class member-
ship. The outputs are represented by unit basis vectors:

[1 0 0] = awake

[0 1 0] = drowsy

[0 0 1] = sleep

3.3. Performance analysis of ANN

Neural networks employing back-propagation were
trained with a training set and checked with a test set. The
neural network will find the input–output maps by analyzing
the training set repeatedly. This is called the network train-

Fig. 6. Graphics of sum-squared error and learning rate.

ing phase. Most of the neural network design effort is spent
in the training phase. Training is normally slow because the
network weights are updated based on the error information.
It is necessary to monitor how well the network is learning.
One of the simplest methods is to observe how the square
difference between the network’s output and the desired
response changes over training iterations. The curve of the
SSE versus iteration is called as the training curve. Train-
ing SSE curve of neural network in 5416 epochs is shown
in Fig. 6. As the network learns, the error converges to
zero.

A neural network is subject to what is known as the mem-
orization of training data. Also it is known as the statistical
phenomenon of over-fitting when it is over-trained. If a net-
work over-fits or memorizes the training data, its generalized
performance on other sample populations, such as, the test
file or on records for which prospective predictions are to be
made, is likely to be severely compromised. Therefore, the
most important criterion is choosing the number of iterations
for training. Cross-validation is one of the most powerful
methods to stop the training. In principle, the training curve
decreases exponentially to zero or a small constant. Just how
small in magnitude this constant depends on the situation and
judgement must be used to find what error value is appropri-
ate for the problem. When the error in the cross-validation
has increased, the training should be stopped because the
point of best generalization has been reached. In this study,
training was done using 5416 epochs, and number of epochs
was determined according to cross-validation. Since SSE is
converging to a small constant, approximately zero in 5416
epochs, training of the neural network is determined to be
successful.

After the training phase, testing of the ANN was done.
The data that the network had not seen before was applied
to the network for testing the network performance. Since
training was successful and the network’s topology was
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Table 2
Alert, drowsy and sleepy state classification performance of the ANN

Accuracy (%) Sensitivity (%) Selectivity (%)

Alert 96 ± 3 94 93
Drowsy 95± 4 96 91
Sleep 94± 5 93 89

correct, it was then used to test data and thus resulted in a
good solution.

3.4. Applying test data

After training and cross-validating this network, it was de-
termined that the network adequately classified data. Then
12 subjects’ records were applied to this network. In this
experiment network inputs of 12 subjects’ records were en-
tered, and desired outputs for these subjects were not given
to the network. The results of network for each subject are
compared with the experts’ prediction.

A classification rate of higher than 95% was achieved
by using artificial neural network as a classifier. The total
number of feature vectors for each data was about 300. De-
pending on which output neuron had a value of 1, the EEG
recording was classified as alertness ([1 0 0]), drowsiness
([0 1 0]) or sleepiness ([0 0 1]). The percentage of matches
between ANN and experienced neurologists for alertness
and drowsiness of ANN trained using data on a single sub-
ject, training and validation set, mean value for repeated
training using data on three different subjects. In all exper-
iments, network scoring was presented as a mean value±
standard deviation (S.D.). The measure of accuracy, sensi-
tivity and selectivity are given in theAppendix A. Also the
accuracy, sensitivity and selectivity of the ANN were given
in Table 2. As seen in table, the sensitivity is the highest
in drowsy signal (96%); the selectivity is the highest in
alert signal (94%). The accuracy is 96± 3% alert, 95±
4% drowsy and 94± 5% sleep signals. The classification
percentages of ANN with wavelet transform on test data are
above 95%. Hence application of this study will be helpful
for the neurologists to analyze the awake-sleep correlations.

4. Conclusion

In this study, prediction of the level of drowsiness was
examined.δ, θ, α, andβ sub-frequencies of the EEG sig-
nals were extracted by using wavelet transform. The wavelet
spectra of EEG signals are used as an input to artificial neural
networks that could be used to discriminate between alert,
drowsy and sleep states. This process is realized by Lab-
VIEW software development tool and online data acquisi-
tion system. Depending on these sub-frequencies, ANN have
been developed and trained. The accuracy of the ANN was
96 ± 3% alert, 95± 4% drowsy and 94± 5% sleep state.
Also, it was observed that while a person changes from the

alert state to sleep state, the EEG spectrum changes from
high to low frequency. When the frequency components of
the sub-frequencies were checked, theβ andα activities were
decreased during the transition from awake to sleep. Thus it
can be concluded that the application of this study will be
useful for the neurologists to analyze awake-sleep correla-
tions.

Appendix A. The measure of sensitivity, selectivity and
specificity

The performance of a particular run of the program, or
a particular reading by an expert was evaluated in terms of
sensitivity, selectivity and specificity, where:

sensitivity= TP

TP+ FN
× 100%

selectivity= TP

TP+ FP
× 100%

specificity= TN

TN + FP
× 100%

accuracy= sensitivity+ specifity

2
× 100%

The specificity was computed only in the context of the
discriminant analysis, in which each fixed length basic epoch
was classified as true positive (TP), false positive (FP), true
negative (TN) or false negative (FN). In subsequent analy-
ses, variable length vigilance states, marked by one observer,
were compared to the reference set and the individual events
were considered as TP (if an overlapping occurred), FP or
FN. We believed that in this case TN counting, and con-
sequently specificity evaluation, was non-sensical (De Carli
et al., 1999).
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