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Perhaps the most basic issue in the study of cognitive workload is the problem of
how to actually measure it. The electroencephalogram (EEG) continues to be the
clinical method of choice for monitoring brain function in assessing sleep dis-

orders, level of anaesthesia and epilepsy. This preference reflects the EEG’s high

sensitivity to variations in alertness and attention, the unimposing conditions

under which it can be recorded, and the low cost of the technology it requires.

These characteristics also suggest that EEG-based monitoring methods might

provide a useful tool in ergonomics. This paper reviews a long-term programme

of research aimed at developing cognitive workload monitoring methods based

on EEG measures. This research programme began with basic studies of the way

neuroelectric signals change in response to highly controlled variations in task
demands. The results yielded from such studies provided a basis on which to
develop appropriate signal processing methodologies to automatically differen-

tiate mental effort-related changes in brain activity from artifactual contaminants

and for gauging relative magnitudes of mental effort in different task conditions.

These methods were then evaluated in the context of more naturalistic computer-

based work. The results obtained from these studies provide initial evidence for
the scientific and technical feasibility of using EEG-based methods for monitoring
cognitive load during human—computer interaction.

1. Introduction

Although the EEG has limitations with respect to its use as a method for three-
dimensional anatomical localization of neurofunctional systems, it has clear advan-
tages relative to other neuroimaging techniques as a method for continuous mon-
itoring of brain function. Indeed, it is often the method of choice for some clinical
monitoring tasks. For example, continuous EEG monitoring is an essential tool in
the diagnostic evaluation of epilepsy (Thompson and Ebersole 1999) and in the
evaluation and treatment of sleep disorders (Carskadon and Rechtschaffen 1989).
It is also coming to play an increasingly important role in neuro-intensive care unit
monitoring (Vespa et al. 1999) and in gauging level-of-awareness during anesthesia
(John et al. 2001, O’Connor et al. 2001).

For many years, efforts have also been under way to evaluate the extent to
which the EEG might be useful as a monitoring modality in applied work contexts.
To be useful in such settings, a monitoring method should be robust enough to be
reliably measured under relatively unstructured task conditions, sensitive enough to
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consistently vary with some dimension of interest, unobtrusive enough to not inter-
fere with operator performance and inexpensive enough to eventually be deployable
outside of specialized laboratory environments. It should also have reasonably good
time resolution to allow tracking of changes in mental status as complex behaviours
unfold. The EEG appears to meet such requirements. Furthermore, the compactness
of EEG technology also means that, unlike other functional neuroimaging modal-
ities (which require massive machinery, large teams of technicians and complete
immobilization of the subject), EEGs can even be collected from an ambulatory
subject who is literally wearing the entire recording apparatus (Gilliam et al. 1999).

In recent years, we have been evaluating the potential of the EEG as a measure of
cognitive workload, primarily in individuals working at computers. Modern, com-
puter-based work environments demand sustained vigilance to multiple streams of
information. Such conditions have the potential to exceed a human’s limited
capacity to attend to and analyse information; cognitive overload has, thus, long
been recognized (Card ef al. 1983, Kieras 1988, Olson and Olson 1990) to be an
important source of performance errors during human-computer interaction. The
potential for overload is particularly acute in unskilled users, where unfamiliar pro-
cedures are likely to require greater commitment of cognitive resources (Anderson
and Boyle 1987, Carlson ef al. 1989). The ability to continuously monitor cognitive
workload might, thus, be valuable in task analysis research and in efforts to improve
the usability of human-computer interfaces (Raskin 2000). Indeed, a central prob-
lem in interface design is to develop means to provide information to a user with
minimum disruption and distraction (Cadiz et al. 2001).

Because the problem of cognitive overload is widely recognized, it has been the
topic of extensive empirical attention. Ironically, perhaps the most basic issue in the
study of cognitive workload is the problem of how to actually measure it. One
possibility is to use the EEG to directly measure the brain’s response to a particular
set of task demands. An EEG-based measurement of cognitive workload could help
characterize the success of efforts to design suitable interfaces and interaction pro-
tocols. Such a tool might also aid in the design of appropriate adaptive-automation
strategies (Morrison and Gluckman 1994, Byrne and Parasuraman 1996,
Parasuraman et al. 2000).

We have been taking a systematic approach towards developing EEG-based
methods for addressing this problem. Our first efforts revolved around identification
and characterization of the properties of EEG signals sensitive to variations in the
difficulty of highly controlled cognitive tasks. We also evaluated methods for analy-
sis of such signals that might be suitable for use in a continuous monitoring context.
More recently, we have begun to generalize those methods to assess computer-based
tasks that are more naturalistic in character. In the following, we review the progress
of those efforts.

2. Brain signals sensitive to variations in mental effort
Our first objective in this programme of research was to attempt to better character-
ize the neurophysiological changes that accompany increases in cognitive workload
and the allocation of mental effort. We have approached this issue in the context of
EEG and event-related potential (ERP) studies of working memory (WM). WM can
be construed as an outcome of the ability to control attention and sustain its focus
on a particular active mental representation (or set of representations) in the face
of distracting influences (Engle et a/. 1999). In many ways, this notion is nearly
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synonymous with what we commonly understand as the ability to effortfully ‘con-
centrate’ on task performance. This ability plays an important role in comprehen-
sion, reasoning, planning and learning (Baddeley 1992). Indeed, the effortful use of
active mental representations to guide performance appears critical to behavioural
flexibility (Goldman-Rakic 1987, 1988) and measures of it tend to be positively
correlated with performance on psychometric tests ‘of cognitive ability and other
indices of scholastic aptitude (Carpenter et al. 1990, Kyllonen and Christal 1990,
Gevins and Smith 2000).

Most of our investigations related to the neurophysiological concomitants of
WM have required subjects to perform controlled ‘n-back’ style tasks (Gevins et al.
1990, 1996, Gevins and Cutillo 1993) that demand sustained attention to a train of
stimuli. In these tasks, the load imposed on WM varies, while perceptual and motor
demands are kept relatively constant. For example, in a spatial variant of the n-back
task we have often employed, stimuli are presented at different spatial positions on a
computer monitor once every 4 or 5s while the subject maintains a central fixation.
Subjects must compare the spatial location of each stimulus with that of a previous
stimulus, indicating whether a match criterion is met by making a key press response
on a computer mouse or other device. In an easy, low load version of the task,
subjects compare each stimulus to the first stimulus presented in each block of
trials (0-back task). In a more difficult, higher load versions, subjects compare the
position of the current stimulus with that presented one, two or even three trials
previously (1-, 2-, or 3-back tasks). These require constant updating of the informa-
tion stored in working memory on each trial, as well constant attention to new
stimuli and maintenance of previously presented information. To be successful in
such tasks when WM demands are high, subjects typically must make a significant
and continuous mental effort. Similar n-back tasks have recently been adopted in
many other laboratories as a means to activate WM networks in a controlled fashion
in the context of conventional behavioural studies (McElree 2001}, other electrophy-
siological studies (Ross and Segalowitz 2000, Wintink ez al. 2001), studies of the
effects of magnetic fields on cognitive function (Koivisto et al. 2000, Oliveri et al.
2001) and functional neuroimaging studies employing PET or fMRI methods
(Jonides et al. 1993, Cohen et al. 1994, McCarthy et al. 1994, Braver et al. 1997,
Jansma et al. 2000).

The stimulus-locked ERPs recorded in such conditions in themselves provide an
intriguing picture of the transient, rapidly shifting, sub-second patterns of activation
that characterize the neurofunctional networks that underlie task performance
(Gevins and Cutillo 1993, Gevins et al. 1995, 1996, McEvoy et al. 1998, 2001).
There has also been a long and productive history of experimentation with such
measures as indices of task imposed cognitive workload (Isreal ez al. 1980, Sirevaag
et al. 1993, Humphrey and Kramer 1994, Wilson et al. 1994, Kramer et al. 1995, Kok
2001, Ullsperger et al. 2001). However, to compute such measures requires either
that a primary task itself emit distinct and more-or-less regular stimuli that an ERP
response can be reliably time-locked to (something lacking from most real-world
activities), or that a task-irrelevant probe stimulus be added to the operator’s work
environment. In either case, the low signal-to-noise inherent in most single trial
ERPs can often necessitate averaging the response over many similar events.

The spectral composition of the ongoing EEG also displays regular patterns of
load-related modulation during n-back task performance. Some components of the
EEG spectrum could have significant utility for continuous monitoring applications
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Figure 1. Effect of varying the difficulty of an n-back working memory task on the spectral
power of EEG signals. The figure illustrates spectral power in dB of the EEG in 4-14Hz
range at frontal (Fz) and parietal (Pz) midline electrodes, averaged over all trials of the tasks
and collapsed over 80 subjects. Data are from Gevins and Smith (2000).

and, in contrast to ERP indices, can be measured either independently of specific
task events or in temporal conjunction to them. Because of these properties, we have
focused our efforts to develop workload-monitoring methods on such spectral EEG
measures. For example, figure 1 displays spectral power in the 4-14 Hz range at a
frontal midline (Fz) and a parietal midline (Pz) scalp location computed from the
continuous EEG during performance of low load (0-back) and moderately high load
(2-back) versions of a spatial n-back task. The data represent the average response
from a group of 80 subjects in a large study of individual differences in cognitive
ability (Gevins and Smith 2000), and show significant differences in spectral power as
a function of task load that vary between electrode locations and frequency bands.

More specifically, at the midline frontal site a 5-7 Hz or §-band spectral peak is
increased in power during the high load task relative to the low load task. This type
of frontal midline 7-signal has frequently been reported to be enhanced in difficult,
attention demanding tasks, particularly those requiring a sustained focus of con-
centration (Mizuki et al. 1980, Miyata er al. 1990, Yamamoto and Matsuoka 1990,
Gundel and Wilson 1992, Gevins et al. 1997, 1998, Gevins and Smith 1999).
Topographic analyses have indicated that this task loading-related #-signal tends
to have a sharply defined potential field with a focus in the anterior midline
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region of the scalp (Inouye ez al. 1994, Gevins et al. 1997); such a restricted topo-
graphy is unlikely to result from distributed generators in dorsolateral cortical
regions. Instead, attempts to model the generating source of the frontal #-rhythm
from both EEG (Gevins et al. 1997) and magnetoencephalographic (Ishii ez al. 1999)
data have implicated the anterior cingulate cortex as a likely region of origin. This

_cortical region is thought to be part of an anterior brain network that is critical to

attention control mechanisms and that is activated by the performance of complex
cognitive tasks (Posner and Peterson 1990, Posner and Rothbart 1992). In a review
of over 100 positron emission tomography (PET) activation studies that examined
anterior cingulate cortex activity, Paus et al. (1998) found that the major source of
variance that affected activation in this region was associated with changes in task
difficulty. The EEG results are, thus, consistent with these views, implying that
performance of tasks that require significant mental effort places high demands on
frontal brain circuits involved with attention control.

In contrast, figure 1 also indicates that signals in the 8—12 Hz or a-band tend to
be attenuated in the high load task relative to the low load task. This inverse rela-
tionship between task difficulty and a-power has been observed in many studies in
which task difficulty has been systematically manipulated (Galin ez al. 1978, Gundel
and Wilson 1992, Gevins et al. 1997, 1998, Gevins and Smith 1999). Indeed, this task
correlate of the a-rhythm has been recognized for over 70 years (Berger 1929).
Because of this load-related attenuation, the magnitude of a-activity during cogni-
tive tasks has been hypothesized to be inversely proportional to the fraction of
cortical neurons recruited into a transient functional network for purposes of task
performance (Gevins and Schaffer 1980, Pfurtscheller and Klimesch 1992,
Mulholland 1995). This hypothesis is consistent with current understanding of the
neural mechanisms underlying generation of the a-rhythm (reviewed in Smith et al.
2001). Convergent evidence for this view is also provided by observations of a
negative correlation between a-power and regional brain activation as measured
with PET (Larson ez al. 1998, Sadato et al. 1998), and the frequent finding from
neuroimaging studies of greater and more extensive brain activation during task
performance when task difficulty increases (Baker et al. 1996, Bunge et al. 2000,
Carpenter et al. 2000, Garavan et al. 2000).

In addition to signals in the - and o-bands, other spectral components of the
EEG have also been reported to be sensitive to changes in effortful attention. These
include slow wave activity in the §- (<3 Hz) band (McCallum e¢ al. 1988, Rockstroh
et al. 1989), high frequency activity in the 8- (15-30Hz) and ~- (30—50 Hz) bands
(Sheer 1989) and rarely studied phenomenon such as the x-rhythm that occurs
around 8Hz in a small percentage of subjects (Kennedy ez al. 1948, Chapman
et al. 1962). Since such phenomena were observed relatively infrequently in our
series of studies on working memory, we will not discuss them further, but they
may, nonetheless, ultimately prove useful in efforts to monitor cognitive workload
using EEG measures.

3. Automating detection of mental effort-related changes in the EEG
As the data reviewed above indicate, spectral components of the EEG do in fact vary
in a predictable fashion in response to variations in the cognitive demands of tasks.
While this is a necessary condition for the development of an EEG-based monitor of
cognitive workload, it is not sufficient. A number of other issues must also be
addressed if such laboratory observations are to be transitioned into practical
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tools. Foremost among them is the problem of EEG artifact. That is, in addition to
brain activity, signals recorded at the scalp include contaminating potentials from
eye movements and blinks, muscle activity, head movements and other physiological
and instrumental sources of artifact. Such contaminants can easily mask cognition-
related EEG signals (Barlow 1986, Gevins et al. 1979a, b, c, 1980). In laboratory
studies, human experts can be used to actively identify artifacts in raw data and
eliminate any contaminated EEG segments, to insure that data used in analyses
represent actual brain activity. For large amounts of data, this is an expensive,
labour-intensive process which itself is both subjective and variable. To be practical
in more routine applied contexts such decisions must be made algorithmically.

A great deal of research has been directed towards the problem of automated
artifact detection. In previous work in our laboratory, we have developed and objec-
tively evaluated several generations of automatic artifact detection algorithms. These
include multi-criteria spectral detectors (Gevins et al. 1975, 1977), sharp transient
waveform detectors (Gevins et al. 1976), and detectors using neural networks
(Gevins and Morgan 1986, 1988). We have found that our most recent generations
of detection algorithms perform about as well as the consensus of expert human
judges. In a database of ~40000 eye-movement, head/body movement and muscle
artifacts, the algorithms successfully detected 98.3% of the artifacts, with a false
detection rate of 2.9%, whereas the average expert human judge found 96.5% of
the artifacts, with a 1.7% false detection rate. Thus, while further work on the topic
is needed, it is reasonable to expect that the problem of automated artifact detection
will not be an insurmountable barrier to the development of an EEG-based cognitive
workload monitor.

A closely related problem is the fact that, in subjects actively performing tasks
with significant perceptuomotor demands in a normal fashion, the incidence of data
segments contaminated by artifacts can be high. As a result, it can be difficult to
obtain enough artifact-free data segments for analysis. To minimize data loss, effec-
tive digital signal processing methods must also be developed to filter contaminants
out of the EEG when possible. Qur main approach to this problem has been to
implement adaptive filtering methods to decontaminate artifacts from EEG signals
(Du et al. 1994). We have found such methods to be effective at recovering most of
the artifact contaminated data recorded in our typical laboratory studies of subjects
working on computer-based tasks. A variety of other methods have been employed
by different investigators in response to this problem, including such techniques
as autoregressive modelling (Van den Berg-Lensssen ez al. 1989), source modeling
approaches (Berg and Scherg 1994) and independent components analysis (Jung et al.
2000). As with the problem of artifact detection, continued progress in this area
suggests that, at least under some conditions and for some types of artifacts, decon-
tamination strategies will evolve that will enable the automation of EEG processing
for continuous monitoring applications.

Presuming, then, that automated pre-processing of the EEG can yield sufficient
data for subsequent analyses, questions still remain as to whether the type of load-
related changes in EEG signals can be measured in a reliable fashion in individual
subjects and whether such measurements can be accomplished with a temporal
granularity suitable for tracking complex behaviours. That is, in the experiments
described above, changes in the 8- and a-bands in response to variations in WM load
were demonstrated by collapsing over many minutes of data recorded from a subject
at each load level, and then comparing the mean differences between load levels
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across groups of subjects using conventional parametric statistical tests. Under
normal waking conditions, such task-related EEG measures have high test-re-test
reliability when compared across a group of subjects measured during two sessions
with 1 week between them (McEvoy et al. 2000). However, for the development of
automated EEG analysis techniques suitable for monitoring applications, load-
related changes in the EEG would ideally also be replicable when computed over
short segments of data, and would need to have high enough signal-to-noise ratios to
be measurable within such segments.

Prior work has demonstrated that multivariate combinations of EEG variables
can be used to accurately discriminate between specific cognitive states (Gevins er al.
1979a, b, ¢, Wilson and Fisher 1995). Neural network-based pattern classification
algorithms trained on data from individual subjects could also be used to automa-
tically discriminate data recorded during different load levels of versions of the type
of n-back WM task described above. For example, we performed an experiment
(Gevins et al. 1998) in which eight subjects performed both spatial and verbal ver-
sions of 3-, 2- and 1-back WM tasks on test sessions conducted on different days. For
each single trial of data in each subject, spectral power estimates were computed in
the 6- and a-bands for each electrode site. Pattern recognition was performed with
the classic Joseph-Viglione neural network algorithm (Joseph 1961, Viglione 1970,
Gevins 1980, Gevins and Morgan 1986, 1988). This algorithm iteratively generates
and evaluates two-layered feed-forward neural networks from the set of signal fea-
tures, automatically identifying small sub-sets of features that produce the best
classification of examples from the sample of data set aside for training. The result-
ing classifier networks were then cross-validated on the remaining data not included
in the training sample.

Utilizing these procedures, we found that test data segments from 3-back vs
I-back load levels were discriminated with over 95% (p < 0.001) accuracy. Over
80% (p < 0.05) of test data segments associated with a 2-back load could also be
discriminated from data segments in the 3-back or 1-back task loads. Such results
provide initial evidence that, at least for these types of tasks, it is possible to develop
algorithms capable of discriminating different cognitive workload levels with a high
degree of accuracy. Not surprisingly, they also indicated that relatively large differ-
ences in cognitive workload are easier to detect than smaller differences, and that
there is an inherent trade-off between the accuracy of classifier performance and the
temporal length of the data segments being classified.

High levels of accurate classification were also achieved when applying networks
trained with data from one day to data from another day and when applying net-
works trained with data from one task (e.g. spatial WM) to data from another task
(e.g. verbal WM). We also attempted to develop networks trained with data from a
group of subjects to data from new subjects. Such generic networks were found on
average to yield statistically significant classification results when discriminating the
1-back from the 3-back task load conditions, but their accuracy was much reduced
from that achievable with subject specific networks. On the one hand, such results
indicate that there is a fair amount of commonality across days, tasks and subjects in
the particular set of EEG frequency-band measures that are sensitive to increases in
cognitive workload. Such commonalities can be exploited in efforts to design efficient
sensor montages and signal processing methods. Nonetheless, they also indicate that,
to achieve optimal performance using EEG-based cognitive load monitoring
methods, it will likely be necessary to calibrate algorithms to accommodate
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individual differences. Such conclusions are also consistent with the observation that
patterns of task-related EEG changes vary in conjunction with individual differences
in cognitive ability and cognitive style (Gevins and Smith 2000).

Finally, it is also worthwhile to briefly mention another potential direction for
such methods. In examining changes in neurophysiological correlates of n-back task
performance over time, we found substantial’changes in both the magnitude and the
topography of task-related modulation of EEG activity in the a- and #-bands
between the time when naive subjects were first learning to perform versions of
the n-back WM and after they had developed some skill at it (Gevins et al. 1997,
Smith et al. 1999). To further analyse these data, we used neural network methods
analogous to those described above in an attempt to discriminate the task-related
EEG signals recorded in the 3-back task when subjects were first learning the task
from signals recorded during skilled performance. Across subjects, we were able to
obtain very high levels of classification accuracy (range: 96-100%, p < 0.001) for
discriminating naive from practiced states. Such results imply that the WM demands
of task performance changed with practice and that such changes could be auto-
matically detected with EEG methods. Since overload of attentional or WM capacity
has been found to be a limiting factor in the early stages of procedural skill acquisi-
tion (Woltz 1988, Kyllonen and Shute 1989), minimizing the potential of such over-
load is an important design guideline for the development of intelligent tutoring
systems (Anderson and Boyle 1987, Carlson et al. 1989). The data described
above, thus, suggest that it might be possible to utilize information provided by
such monitoring methods to adapt a computer-aided instruction protocol to the
cognitive constraints and skill levels of individual students.

4, Extension of neurophysiology-based workload monitoring methods to
‘naturalistic’ HCI

The types of results described above provide evidence for the basic feasibility of
using EEG-based methods for unobtrusively monitoring cognitive task load in
individuals engaged in computer-based work. However, the n-back WM task
made minimal demands on perceptual and motor systems and it only required
that a subject’s effort be focused on a single repetitive activity. The ability to reliably
measure cognitive load in individual subjects under such constrained circumstances
might in itself be useful. For example, it has been applied to the problem of assessing
the effect of environmental stressors on cognitive functions (Gevins and Smith 1999).
Even so, in more naturalistic work environments, task demands are usually less
structured and mental resources often must be divided between competing activities,
raising questions as to whether results obtained with the n-back task could generalize
to contexts that are more realistic.

Recent studies have demonstrated that more complicated forms of human-—
computer interaction (such as videogame play) produce mental effort-related mod-
ulation of the EEG that is similar to that observed during n-back tasks (Pellouchoud
et al. 1999, Smith et al. 1999). This implies that it might be possible to extend EEG-
based multivariate methods for monitoring task load to such circumstances. To
evaluate this possibility we performed a subsequent study (Smith ez al 2001) in
which the EEG was recorded while subjects performed the Multi-Attribute Task
Battery (MATB; Comstock and Arnegard 1992). The MATB is a personal com-
puter-based multi-tasking environment that simulates some of. the activities a pilot
might be required to perform. It has been used in several prior studies of mental



EEG monitoring of cognitive workload 121

workload and adaptive automation (Parasuraman et al. 1993, 1996, Fournier et al.
1999). The data collected during performance of the MATB were used to test
whether it is possible to derive combinations of EEG features that can be used for
indexing task loading during a relatively complex form of human-computer inter-
action. )

The MATB task included four concurrently performed sub-tasks in separate
windows on a computer screen (for graphic depictions of the MATB visual display,
see Fournier et al. (1999) and Molloy and Parasuraman (1996)). These included a
‘systems monitoring task’ that required the operator to monitor and respond to
simulated warning lights and gauges, a ‘resource management task’ in which fuel
levels in two tanks had to be maintained at a certain level, a ‘communications task’
that involved receiving audio messages and making frequency adjustments on virtual
radios, and a compensatory tracking task that simulated manual control of aircraft
position. Manipulating the difficulty of each sub-task served to vary load; such
manipulations were made in a between blocks fashion. Subjects learned to perform
low-, medium- and high-load (LL, ML and HL) versions of the tasks. For compar-
ison purposes, they also performed a ‘passive watching’ (PW) condition in which
they observed the tasks unfolding without actively performing them.

Subjects engaged in extensive training on the tasks on one day, and then returned
to the laboratory on a subsequent day for testing. On the test day, subjects per-
formed multiple 5 min blocks of each task difficulty level. Behavioural and subjective
workload ratings provided evidence that, on average, workload did indeed increase
in a monotonic fashion across the PW, LL, ML and HL task conditions. This
increase in workload was associated with systematic changes in the EEG. In par-
ticular, as in the prior study of workload changes in the n-back task paradigm,
frontal #-band activity tended to increase with increasing task difficulty, whereas
a-band activity tended to decrease (figure 2). Such results indicated that the work-
load manipulations were successful, and that spectral features in the 6- and a-range
might be useful in attempting to automatically monitor changes in workload with
EEG measures.

Separate blocks of data were, thus, used to derive and then independently vali-
date subject-specific, EEG-based, multivariate cognitive workload functions. In con-
trast to the two-class pattern detection functions that were employed to discriminate
between different task load levels in the prior study, we evaluated a different tech-
nique that results in a single subject-specific function that produces a continuous
index of cognitive workload and, hence, could be applied to data collected at each
difficulty level of the task. In this procedure, the EEG data was first decomposed into
short windows and a set of spectral power estimates of activity in the ¢- and a-
frequency ranges was extracted from each window. A unique multivariate function
was then defined for each subject that maximized the statistical distance or diver-
gence (Tou and Gonzalez 1974) between a small sample of data from low and high
task load conditions. To cross-validate the function it was tested on new data seg-
ments from the same subject. Across subjects (figure 3), mean task load index values
were found to increase systematically with increasing task difficulty, and differed
significantly between the different versions of the task (Smith et al. 2001). These
results provide encouraging initial evidence that EEG measures can indeed provide
a modality for measuring cognitive workload during more complex forms of com-
puter interaction. Although complex, the signal processing and pattern classification
algorithms employed in this study were for real time implementation. A prototype
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Figure 2. Mean (n = 16) EEG power for the frontal 6- and parietal o-EEG signals during
performance of the MATB flight simulation task. Data have been normalized within each
subject. Data are presented for each of four task versions (PW =passive watch, L =low
load, ML =moderate load, HL =high load). Normalized spectral power for frontal 6 and
parietal « are plotted. 7-power increases from the PW to the HL task version, whereas 6-
power decreases from the PW to the HL task version. Data are from Smith ez al. (2001).
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Figure 3. Mean and SEM (r = 16) EEG-based cognitive workload index values during
performance of the MATB flight simulation task. Data are presented for each of four
task versions (PW = passive watch, LL =low load, ML =moderate load, HL =high load).
Average cognitive workload index scores increased monotonically with increasing task
difficulty. Data are from Smith et al. (2001b).

online system running on a circa 1997 personal computer performed the requisite
calculations on-line and provided an updated estimate of cognitive workload at 4s
intervals while subjects were engaged in task performance.

To further evaluate the utility of the approach described above as a tool for
research on human—computer interaction, we also performed a small exploratory
study that involved more naturalistic computer tasks. In this experiment (Smith and
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Gevins, unpublished observations), EEG data was first recorded from subjects as
they performed multiple series of trials of easy (0-back) and difficult (3-back) n-back
tasks, as well as when they rested quietly, in order to establish a baseline view of the
response of their brain to increased cognitive load. Data was then recorded while
subjects performed more common computer-based tasks that were performed under
time pressure and that were more-or-less intellectually demanding. These more nat-
uralistic activities required subjects to perform word processing, take a computer-
based aptitude test, and search for information on the web. The word processing
task required subjects to correct as many misspellings and grammatical errors as they
could in the time allotted, working on a lengthy text sample using a popular word
processing program. The aptitude test was a practice version of the Computer-
Adaptive GMAT® test. Subjects were asked to solve as many ‘data sufficiency’
problems as possible in the time allotted; such problems make a high demand on
logical and quantitative reasoning skills and require significant mental effort to
complete in a timely fashion. The web-searching task required subjects to use a
popular web browser and search engine to find as many answers as possible in the
time allotted to a list of trivia questions provided by the experimenter. For example,
subjects were required to use the browser and search engine to ‘convert 98.6 degrees
Fahrenheit into degrees Kelvin’, ‘find the population of the 94105 area code in the
1990 US Census’ and ‘find the monthly mortgage payment on a $349 000, 30 year
mortgage with a 7.5% interest rate’. Each type of task was structured such that
subjects would be unlikely to be able to complete it in the time allotted.

The same basic analysis procedure described above that was applied to the EEG
data recorded during MATB performance was aiso employed in this study. More
specifically, a personalized continuous index of cognitive workload was first devel-
oped for each subject from a calibration set of data. In this case, the calibration data
used to create the subject-specific index of cognitive workload included samples of
the subject’s 0-back and 3-back WM task EEG data. The resulting function was then
applied to windowed samples of that subject’s data from the quiet resting condition,
from samples of 0-back and 3-back data not included in the calibration data set,
and from samples of data during performance of the various naturalistic types of
computer-based work.

A summary of the results from these analyses, averaged across data segments
within each task condition and compared between conditions, is presented in figure
4. These comparisons indicated that the cognitive load index performed in a pre-
dictable fashion. That is, the condition in which the subject was asked to sit quietly
and passively view a blank screen produced an average EEG-based cognitive work-
load around the zero point of the scale. Average index values during 0-back task
performance were slightly higher than those during the resting condition, and aver-
age index values during the 3-back task were significantly higher than those recorded
either during the 0-back WM task or during the resting state. All three naturalistic
tasks produced workload index values slightly higher than that obtained in the 3-
back task, which might be expected given that the n-back tasks had been practiced
and were repetitive in nature, whereas the other tasks were novel and required the
use of strategies of information gathering, reasoning and responding that were less
stereotyped in form. Among the naturalistic tasks, the highest levels of cognitive
workload were recorded during the computerized aptitude-testing task—the con-
dition that was also subjectively experienced as the most difficuit.
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COGNITIVE LOAD DURING HCI
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Figure 4. Mean and SEM (n = 7) EEG-based cognitive workload index values during rest-
ing conditions, easy and difficult versions of the n-back WM tasks, and a few naturalistic
types of computer-based work (see text for full description of tasks and procedure). The data
represent average index values over the course of each type of task. The easy WM -and
resting conditions produced significantly lower values than the more difficult WM condition
or during the naturalistic tasks.

This pattern of results is interesting, not only because it conforms with a priori
expectations about how workload would vary among the different tasks, but also
because it provides data relevant to the issue of how the workload measure is
affected by differences in perceptuomotor demands across conditions. Since in the
n-back tasks, stimuli and motor demands are kept constant between the 0-back and
3-back load levels, the observed EEG differences in those conditions are clearly
closely related to differences in the amounts of mental work demanded by the two
task variants rather than other factors. However, in the study of MATB task per-
formance described above, the source of variation in the index is somewhat less clear.
On the one hand, performance and subjective measures unambiguously indicated
that the mental effort required to perform the high load version of the MATB was
substantially greater than that required by the low load (or passive watching) ver-
sions. On the other hand, the perceptuomotor requirements in the high load version
were also substantially greater than those imposed by the other version. In this latter
experiment, such confounds was less of a concern. Indeed, both the text editing task
and the web searching task required more effortful visual search and more active
physical responding than the aptitude test, whereas the aptitude test had little read-
ing and less responding and instead required a great deal of thinking and mental
evaluation of possibilities. Thus, the fact that the average cognitive workload values
during performance of the aptitude test were higher than those observed in the other
tasks provides convergent support for the notion that the subject-specific indices
were more closely tracking variations in mental demands rather than variations in
perceptuomotor demands in these instances.
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5. Conclusions

In summary, the results reviewed above indicate that the EEG changes in a highly
predictable way in response to sustained changes in task load and associated changes
in the mental effort required for task performance. It appears that such changes can
be automatically detected and measured using algorithms that combine parameters
of the EEG power spectra into multivariate functions. Such methods can be effective
both in gauging the variations in cognitive workload imposed by highly controlled
laboratory tasks and in monitoring differences in the mental effort required to
perform tasks that more closely resemble those that an individual might encounter
in a real-world work environment.

The results presented would benefit from further replication, and are in need of
significant refinement. For example, the data presented herein collapsed cognitive
activity over ‘whole-tasks’, that is, the data were collapsed over many minutes of
sustained performance. However, cognitive workload indices were calculated over
data segments that were frequently updated and were of much shorter duration.
Future work will need to try to identify how such momentary measures of cognitive
workload vary with specific intra-task events. One possibility for using EEG spectral
measures to evaluate cognitive load in response to specific task events is to employ
‘event-related desynchonization” (ERD) methods that compare post-stimulus power
to a pre-stimulus baseline measure and use degree of change in the spectra as a
load measure. However, past efforts to evaluate such measurements in somewhat
naturalistic tasks (in fact, during the MATB) have found that, although useful in
single tasks, the ERD is insensitive to workload variations in multi-tasking contexts
(Fournier et al. 1999). This failure likely reflects the fact that, in such contexts,
workload is likely to be relatively high even in the pre-stimulus baseline period,
and so any stimulus related change in the EEG spectra is likely to be fairly small.
It is an open question whether other types of EEG-based methods might be more
fruitfully applied in such circumstances.

Another area of future refinement is related to the current unitary nature of the
cognitive workload measures. That is, some views of the structure of the mental
resources that can be allocated to task performance posit a relative independence
of the resources involved with cognitive processes and those involved with perceptual
processing and motor expression. Future development of such methods should, thus,
explore the possibility of developing somewhat orthogonal physiological indices that
can differentiate between the loading of one or another type of neural resource
system. While the need for such future refinements is clear, the current results, none-
theless, provide compelling initial evidence for the feasibility of creating EEG-based
technologies for monitoring cognitive workload during human—computer inter-
action.

Acknowledgements

This research was supported by several agencies of the US Government including
the Air Force Office of Scientific Research, the National Science Foundation and
the National Aeronautics and Space Administration. We thank Drs Harrison
Leong, Robert Du and Linda McEvoy for their contributionsto the studies reviewed
herein.



126 A. Gevins and M. E. Smith

References

ANDERSON, J.R. and BoyLE, S. F. 1987, Cognitive principles in the design of computer tutors,
in P. Morris (ed.), Modelling Cognition (London: John Wiley & Sons Ltd), 93—133.

BADDELEY, A. 1992, Working Memory, Science, 255, 556-559.

BAKER, S. C., RoGERS, R. D., OWEN, A. M., FriTH, C. D., DoLAN, R. J., FRACKOWIAK, R. S.
and RoBBins, T. W. 1996, Neural systems engaged by planning: a PET study of the
Tower of London task, Neuropsychologia, 34, 515-526.

BarLow, J. S. 1986, Artifact processing rejection and reduction in EEG data processing, in
F. H. Lopes da Silva, W. Storm van Leeuwen and A. Remond (eds), Handbook of
Electroencephalography and Clinical Neurophysiology Vol 2 (Amsterdam: Elsevier),
15-65.

BERG, P. and SCHERG, M. 1994, A multiple source approach to the correction of eye artifacts,
Electroencephalography and Clinical Neurophysiology, 90, 229-241.

BERGER, H. 1929, Uber das Elektroenzephalogramm des Menschen, Archives of Psychiatry,
87, 527-570.

Braver, T. S., CoHEN, J. D., NysTrROM, L. E., JONIDES, J., SMITH, E. E. and NorL, D. C.
1997, A parametric study of prefrontal cortex involvement in human working
memory, Neuroimage, 5, 49-62.

BUNGE, S. A., KLINGBERG, T., JACOBSEN, R. B. and GABRIELL J. D. 2000, A resource model
of the neural basis of executive working memory, Proceedings of the National Academy
of Sciences (USA), 97, 3573-3578.

BYRNE, E. A. and PARASURAMAN, R. 1996, Psychophysiology and adaptive automation,
Biological Psychology, 42, 249-268.

CapIz, J. J., VENOLIA, G. D., JANCKE, G. and GUPTA, A., 2001, Sideshow: Providing periph-
eral awareness of important Information (MSR-TR-2001-83, Redmond, WA: Microsoft
Research, Microsoft Corporation).

CaRD, S. K., MoraN, T. P. and NEweLL, A. 1983, The Psychology of Human- Compute)
Inteiactwn (Hlllsdale NJ: Lawrence Erlbaum Associates, Inc).

CARLSON, R. A., SULLIVAN, M. A. and SCHNEIDER, W. 1989, Practice and working memory
effects in building procedural skill, Journal of Experimental Psychology: Learning,
Memory and Cognition, 3, 517-526.

CARPENTER, P. A., JusT, M. A. and REICHLE, E. D. 2000, Working memory and executive
function: evidence from neuroimaging, Current Opinion in Neurobiology, 10, 195-199.

CARPENTER, P. A., JusT, M. A. and SHELL, P. 1990, What one intelligence test measures: a
theoretical account of the processing in the Raven Progressive Matrices Test,
Psychological Review, 97, 404—431.

CARSKADON, M. A. and RECHTSCHAFFEN, A. 1989, Monitoring and staging human sleep, in
M. H. Kryger, T. Roth and W. C. Dement (eds), Principles and Practice of Sleep
Medicine, 2° edn (Philadelphia: W.B. Saunders & Co), 943-960.

CHAPMAN, R. M., ARMINGTON, J. C. and BRAGDEN, H. R. 1962, A quantitative survey of
kappa and alpha EEG activity, Electroencephalography and Clinical Neurophysiology,
14, 858-868.

ComueNn, J. D, ForMmaN, S. D., BRaVER, T. S., CasEY, B. J., SERVAN-SCHREIBER, D. and
NovrL, D. C. 1994, Activation of prefrontal cortex in a non-spatial working memory
task with functional MR, Human Brain Mapping, 1, 293-304.

CoMsTOCK, J. R. and ARNEGARD, R. J. 1992, The Muiti-Attribute Task Battery for Human
Operator Workload and Strategic Behavior Research (104174: NASA Technical
Memorandum).

Du, W., LEoNG, H. M. and GEvINs, A. S. 1994, Ocular artifact minimization by adaptive
filtering, Proceedings of the Seventh IEEE SP Workshop on Statistical Signal and Array
Processing, Quebec City, Canada, 433-436.

ENGLE, R. W., TuHOLSKI, S. and KANE, M. 1999, Individual differences in working memory
capacity and what they tell us about controlled attention, general fluid intelligence and
functions of the prefrontal cortex, in A. Miyake and P. Shah (eds), Models of Working
Memory (Cambridge: Cambridge University Press), 102-134.

FoOurNIER, L. R., WiLsoN, G. F. and Swaln, C. R. 1999, Electrophysiological, behavioral,
and subjective indexes of workload when performing multiple tasks: manipulations of
task difficulty and training, International Journal of Psychophysiology, 31, 129-145.




EEG monitoring of cognitive workload 127

GALIN, D., JOUNSTONE, J. and HERRON, J. 1978, Effects of task difficulty on EEG measures of
cerebral engagement, Neuropsychologia, 16, 461-472.

GaARAVAN, H.,Ross, T. J., L1, S. and STEIN, E. A. 2000, A parametric manipulation of central
executive functioning, Cerebral Cortex, 10, 585-592.

Gevins, A. and CutiLLo, B. 1993, Spatiotemporal dynamics of component processes in
human working memory, Electroencephalography and Clinical Neurophysiology, 87,
128--143. ’ ’

GEVINS, A. and MoRGAN, N. 1986, Classifier-directed signal processing in brain research,
IEEE Transactions on Biomedical Engineering, 33, 1058-1064.

GEvINs, A. and SMiTH, M. E. 1999, Detecting transient cognitive impairment with EEG
pattern recognition methods, Aviation Space and Environmental Medicine, 70, 1018—
1024.

Gevins, A. and SmiTH, M. E. 2000, Neurophysiological measures of working memory and
individual differences in cognitive ability and cognitive style, Cerebral Cortex, 10, 829
839.

GEevINs, A., LeoNG, H., SmitH, M. E., Lg, J. and Du, R. 1995, Mapping cognitive
brain function with modern high-resolution electroencephalography, Trends in
Neurosciences, 18, 429-436.

GEVINS, A., SMITH, M. E., LEONG, H., McEvoy, L., WHITFIELD, S., Du, R. and RusH, G.
1998, Monitoring working memory load during computer-based tasks with EEG
pattern recognition methods, Human Factors, 40, 79-91.

GEVINS, A., SMITH, M. E., McEvoy, L. and Yu, D. 1997, High-resolution EEG mapping of
cortical activation related to working memory: effects of task difficulty, type of process-
ing, and practice, Cerebral Cortex, 7, 374-385.

GEVINS, A. S. 1980, Pattern recognition of brain electrical potentials, /EEE Transactions on
Pattern Analysis and Machine Intelligence, 2, 383-404.

GEvINS, A. S. and MorGaN, N. H. 1988, Applications of neural-network (NN) signal proces-
sing in brain research, JEEE Transactions on Acoustics, Speech, and Signal Processing,
36, 1152-1161.

GEVINS, A. S. and SCHAFFER, R. E. 1980, A critical review of electroencephalographic EEG
correlates of higher cortical functions, CRC Critical Reviews in Bioengineering, 4, 113—
164.

GEVINS, A. S., BRESSLER, S. L., CuTIiLLO, B. A., ILLES, J., MILLER, J. C., STERN, J. and JEX,

‘ H. R. 1990, Effects of prolonged mental work on functional brain topography,
Electroencephalography and Clinical Neurophysiology, 76, 339-350.

GevINS, A. S., DovLg, J. C., ScHAFFER, R. E., CaLLawAaY, E. and YEBAGER, C. 1980,
Lateralized cognitive processes and the electroencephalogram, Science, 207, 1005-1008.

GEVINS, A. S., SMITH, M. E., LE, J., LEoNG, H., BENNETT, J., MARTIN, N., McEvoy, L., Du,
R. and WHITFIELD, S. 1996, High resolution evoked potential imaging of the cortical
dynamics of human working memory, Electroencephalography and Clinical Neuro-
physiology, 98, 327-348.

GEVINS, A. S., YEAGER, C. L., DIAMOND, S. L., SPIRE, J. P., ZEITLIN, G. M. and GEVINS, A.
H. 1975, Automated analysis of the electrical activity of the human brain (EEG): a
progress report, Proceedings of the Institute of Electrical and Electronics Engineers, 63,
1382-1399.

GEVINS, A. S., YEAGER, C. L., DiaMOND, S. L., SPIRE, J. P., ZEITLIN, G. M. and GEVINS,
A. H. 1976, Sharp-transient analysis and thresholded linear coherence spectra of par-
oxysmal EEGs, in P. Kellaway and 1. Petersen (eds), Quantitative Analytic Studies in
Epilepsy (New York: Raven Press), 463—481.

GEVINS, A. S., YEAGER, C. L., ZEITLIN, G. M., ANcoLl, S. and DEDON, M. 1977, On-line
computer rejection of EEG artifact, FElectroencephalography and Clinical
Neurophysiology, 42, 267-274.

GEVINS, A. S., ZEITLIN, G. M., DoYLE, J. C., SCHAFFER, R. E. and CaLLAwAY, E. 1979a,
EEG patterns during ‘cognitive’ tasks. II. Analysis of controlled tasks,
Electroencephalography and Clinical Neurophysiology, 47, 704-710.

Gevins, A. S., ZeitLiN, G. M., Doyig, J. C., YINGLING, C. D., SCHAFFER, R. E.,
CarLLawAY, E. and YEAGER, C. L. 1979b, Electroencephatogram correlates of higher
cortical functions, Science, 203, 665-668.



128 A. Gevins and M. E. Smith

GEVINS, A. S., ZEITLIN, G. M., YINGLING, C. D., DoyLE, J. C., DEDON, M. F., SCHAFFER,
R. E., RoumasseT, J. T. and YEAGER, C. L. 1979¢, EEG patterns during ‘cognitive’
tasks. 1. Methodology and analysis of complex behaviors, Electroencephalography and
Clinical Neurophysiology, 47, 693-703.

GririaMm, F., KuzNiecky, R. and FaucHT, E. 1999, Ambulatory EEG monitoring, Journal of
Clinical Neurophysiology, 16, 111-115. )

GoLpMaN-Rakic, P. 1987, Circuitry of primate préfrontal cortex and regulation of behavior
by representational memory, in F. Plum and V. Mountcastle (ed.), Handbook of
Physiology, The Nervous System—Higher Functions of the Brain, 1% edn, Vol. 5
(Bethesda, MD: American Physiological Society), 373-417.

GoLDpMAN-R akIC, P. 1988, Topography of cognition: parallel distributed networks in primate
association cortex, Annual Review of Neuroscience, 11, 137-156.

GUNDEL, A. and WiLsoN, G. F. 1992, Topographical changes in the ongoing EEG related to
the difficulty of mental tasks, Brain Topography, 5, 17-25.

HumpHRrEY, D. and KraMER, A. F. 1994, Toward a psychophysiological assessment of
dynamic changes in mental workload, Human Factors, 36, 3-26.

InouYE, T., SHINOsAKI, K., IyaMa, A., MAaTsuMoTO, Y., To1, S. and IsHiHara, T. 1994,
Potential flow of frontal midline theta activity during a mental task in the human
electroencephalogram, Neuroscience Letters, 169, 145-148.

Isuam, R., SHINOSAKI, K., UkAI S., INOUYE, T., ISHIHARA, T., YOSHIMINE, T., HIRABUKI, N.,
AsaDpA, H., KiHArA, T., ROBINSON, S. E. and TAKEDA, M. 1999, Medial prefrontal
cortex generates frontal midline theta rhythm, Neuroreport, 10, 675-679.

IsrReAL, J. B., WickeNs, C. D., CHESNEY, G. L. and DoNcHIN, E. 1980, The event-related
brain potential as an index of display-monitoring workload, Human Factors, 22, 211-
224.

JansMma,J. M., Ramsey, N. F., CopPoLA, R. and KAHN, R. S. 2000, Specific versus nonspecific
brain activity in a parametric n-back task, Neuroimage, 12, 688—697.

Joun, E. R., PricHEP, L. S., Kox, W., VALDES-S0sA, P., BOSCH-BAYARD, J., AUBERT, E.,
Tom, M., DIMIcHELE, F. and GuGiNo, L. D. 2001, Invariant reversible QEEG effects
of anesthetics, Consciousness and Cognition, 10, 165-183.

JonNipEs, J., SMITH, E. E., KOEPPE, R. A., AwH, E., MINOSHIMA, S. and MINTUN, M. 1993,
Spatial working memory in humans as revealed by PET, Nature, 363, 623-625.
JosepH, R. D. 1961, Contributions of perceptron theory, unpublished PhD thesis, Cornell

University, Ithaca, New York.

Jung, T. P., MAKEIG, S., HuMPHRIES, C., Leg, T. W., McKEowN, M. J., IraGul, V. and
SesNowskl, T. J. 2000, Removing electroencephalographic artifacts by blind source
separation, Psychophysiology, 37, 163-178.

KENNEDY, J. L., GOTTSDANKER, R. M., ARININGTON, J. C. and GraAy, F. E. 1948, A new
electroencephalogram associated with thinking, Science, 108, 527.

Kieras, D. E. 1988, Towards a practical GOMS model methodology for user interface design,
in M. Helander (ed.), The Handbook of Human—Computer Interaction (Amsterdam:
North-Holland), 135-158.

Korvisto, M., Krausg, C. M., REVONSUO, A., LAINE, M. and HAMALAINEN, H. 2000, The
effects of electromagnetic field emitted by GSM phones on working memory,
Neuroreport, 11, 1641-1643.

Kok, A. 2001, On the utility of P3 amplitude as a measure of processing capacity,
Psychophysiology, 38, 557-577.

KRAMER, A. F., TrEJO, L. J. and HUMPHREY, D. 1995, Assessment of mental workload with
task-irrelevant auditory probes, Biological Psychology, 40, 83-100.

KyLLONEN, P. C. and CHrisTAL, R. E. 1990, Reasoning ability is little more than working
memory capacity?!, Intelligence, 14, 389-433.

KyrLrLoNneN, P. C. and SHUTE, V. J. 1989, A taxonomy of learning skills, in P. L. Ackerman
(ed.), Learning and Individual Differences (New York: Freeman), 117-163.

LArsoN, C. L., DavipsoNn, R. J., ABERCROMBIE, H. C., WARD, R. T., SCHAEFER, S. M.,
JacksoN, D. C., HoLpeN, J. E. and PeErLMAN, S. B. 1998, Relations between PET-
derived measures of thalamic glucose metabolism and EEG alpha power,
Psychophysiology, 35, 162—169.




EEG monitoring of cognitive workload 129

McCarLLum, W. C., CooPER, R. and Pocock, P. V. 1988, Brain slow potential and ERP
changes associated with operator load in a visual tracking task, Electroencephalography
and clinical Neurophysiology, 69, 453-468.

McCartHY, G., BLAMIRE, A. M., Pucg, A., NoBrg, A. C., BLocH, G., HyDpER, F.,
GoLpMAN-RAKIC, P. and SHULMAN, R. G. 1994, Functional magnetic resonance
imaging of human prefrontal cortex activation during a spatial working memory
task, Proceedings of the National Academy of Science (USA), 91, 8690-8694.

MCcELReg, B. 2001, Working memory and focal attention, Journal of Experimental
Psychology: Learning, Memory and Cognition, 27, 817-835.

McEvoy, L. K., PELLoUuCHOUD, E., SMITH, M. E. and GEVINS, A. 2001, Neurophysiological
signals of working memory in normal aging, Cognitive Brain Research, 11, 363-376.

McEvoy, L. K., SMITH, M. E. and GevINs, A. 1998, Dynamic cortical networks of verbal and
spatial working memory: effects of memory load and task practice, Cerebral Cortex, 8,
563-574.

McEvoy, L. K., SmitH, M. E. and GEVINS, A. 2000, Test-retest reliability of cognitive EEG,
Clinical Neurophysiology, 111, 457-463.

MiryaTa, Y., TANAKA, Y. and Hono, T. 1990, Long term observation on Fm-theta during
mental effort, Neuroscience, 16, 145-148.

Mizukl, Y., TANAKA, M., IoGAKI, H., NiSHIJIMA, H. and INANAGA, K. 1980, Periodic appear-
ances of theta rhythm in the frontal midline area during performance of a mental task,
Electroencephalography and Clinical Neurophysiology, 49, 345-351.

MoLLoy, R. and PARASURAMAN, R. 1996, Monitoring an automated system for a single
failure: vigilance and task complexity effects, Human Factors, 38, 311-322.

MOoRrRIsON, J. G. and GLUCKMAN, J. P. 1994, Definitions and prospective guidelines for the
application of automation, in M. Mouloua and R. Parasuraman (eds), Human perfor-
mance in automated systems: Current research and trends (Hillsdale, NJ: Lawrence
Erlbaum Associates), 256-263.

MuULHOLLAND, T. 1995, Human EEG, behavioral stillness and biofeedback, International
Journal of Psychology, 19, 263-279.

O’CoNNOR, M. F., Daves, S. M., TuNg, A., Cook, R. I., THISTED, R. and APPELBAUM, J.
2001, BIS monitoring to prevent awareness during general anesthesia, Anesthesiology,
94, 520-522.

OLIVERI, M., TURRIZIANL, P., CARLESIMO, G. A., KocH, G., ToMAIUOLO, F., PANELLA, M.
and CALTAGIRONE, C. 2001, Parieto-frontal interactions in visual-object and visual-
spatial working memory: evidence for transcranial magnetic stimulation, Cerebral
Cortex, 11, 606—618.

OLson, J. R. and OLsoN, G. M. 1990, The growth of cognitive modeling in human-computer
interaction since GOMS, Human-Computer Interaction, 5, 221-265.

PARASURAMAN, R., MoLLOY, R. and SINGH, I. L. 1993, Performance consequences of auto-
mation-induced ‘complacency’, International Journal of Aviation Psychology, 3, 1-23.

PARASURAMAN, R., MouLoua, M. and MoLLoy, R. 1996, Effects of adaptive task allocation
on monitoring of automated systems, Human Factors, 38, 665-679.

PARASURAMAN, R., SHERIDAN, T. B. and WICKENS, C. D. 2000, A model for types and levels
of human interaction with automation, IEEE Transactions Systems, Man, and
Cybernetics-Part A: Systems and Humans, 30, 286-297.

Paus, T., Koski, L., CARAMANOS, Z. and WESTBURY, C. 1998, Regional differences in the
effects of task difficulty and motor output on blood flow response in the human anterior
cingulate cortex: a review of 107 PET activation studies, Neuroreport, 9, R37-R47.

PeLLOUCHOUD, E., SMiTH, M. E., McEvoy, L. and GEvINs, A. 1999, Mental effort-related
EEG modulation during video-game play: comparison between juvenile subjects with
epilepsy and normal control subjects, Epilepsia, 40 (Suppl 4), 38-43.

PFURTSCHELLER, G. and KimescH, W. 1992, Functional topography during a visuoverbal
judgment task studied with event-related desynchronization mappmg, Journal of
Clinical Neurophysiology, 9, 120—131. -

PosnNER, M. 1. and PETERSON, S. E. 1990, The attention system of the human brain, Annual
Review of Neuroscience, 13, 25-42.



130 A. Gevins and M. E. Smith

PosNER, M. I. and RoTHBART, M. K. 1992, Attentional mechanisms and conscious experience,
in A. D. Milner and M. D. Rugg (eds), The Neuropsychology of Consciousness (San
Diego: Academic Press), 91-111.

RaskIN, J. 2000, Humane Interface: New Directions for Designing Interactive Systems (Boston,
MA: Addison-Wesley).

ROCKSTROH, B., ELBERT, T., CANAVAN, A., LUTZENBERGER, W. and BIRBAUMER, N. 1989,
Slow cortical potentials and behavior (Baltimore: Urban & Schwarzenberg).

Ross, P. and SEGaLowiTz, S. J. 2000, An EEG coherence test of the frontal dorsal versus
ventral hypothesis of n-back working memory, Brain and Cognition, 43, 375-379.
SADATO, N., NAKAMURA, S., OoHasHI, T., NisHINA, E., Fuwamoto, Y., WaKI, A. and
YONEKURA, Y. 1998, Neural networks for generation and suppression of alpha

rhythm: a PET study, Neuroreport, 30, 893-897.

SHEER, D. E. 1989, Sensory and cognitive 40 Hz event-related potentials, in E. Basar and T. H.
Bullock (eds), Brain Dynamics, Vol. 2 (Berlin: Springer), 339-374.

SIREVAAG, E. J., KRAMER, A. F. and WICKENS, C. D. 1993, Assessment of pilot performance
and mental workload in rotary wing aircraft, Ergonomics, 36, 1121-1140.

SMITH, M. E., GEVINS, A., BRowN, H., KARNIK, A. and Du, R. 2001, Monitoring task load
with multivariate EEG measures during complex forms of human computer interaction,
Human Factors, 43, 366-380.

SmitH, M. E., McEvoy, L. K. and GEvins, A. 1999, Neurophysiological indices of strategy
development and skill acquisition, Brain Research Cognitive Brain Research, T, 389-404.

TuoMmPsoN, J. L. and EBERSOLE, J. S. 1999, Longterm inpatient audiovisual scalp EEG mon-
itoring, Journal of Clinical Neurophysiology, 16, 91-99.

Tou, J. T. and GonzarLez, R. C. 1974, Pattern Recognition Principles (Reading, MA:
Addison-Wesley Publishing Co).

ULLSPERGER, P., FREUDE, G. and ERDMANN, U. 2001, Auditory probe sensitivity to mental
workload changes—an event-related potential study, International Journal of
Psychophysiology, 40, 201-209.

VAN DEN BERG-LENSSSEN, M. M., BRUNIA, C. H. and BLoM, J. A. 1989, Correction of ocular
artifacts in EEGs using an autoregressive model to describe the EEG: a pilot study,
Electroencephalography and Clinical Neurophysiology, 73, 72-83.

VESsPA, P., NENov, V. and NUWER, M. R. 1999, Continuous EEG monitoring in the intensive
care unit: early findings and clinical efficacy, Journal of Clinical Neurophysiology, 16,
1-13.

VIGLIONE, S. S. 1970, Applications of pattern recognition technology, in J. M. Mendel and
K. S. Fu (eds), Adaptive Learning and Pattern Recognition Systems (New York:
Academic Press), 115-161.

WiLsoNn, G. F. and FisHER, F. 1995, Cognitive task classification based upon topographic
EEG data, Biological Psychology, 40, 239-250.

WiLsoNn, G. F., FULLENKAMP, B. S. and Davis, 1. 1994, Evoked potential, cardiac, blink, and
respiration measures of pilot workload in air-to-ground missions, Aviation, Space and
Environmental Medicine, 65, 100-105.

WINTINK, A. J., SEGaALowITZ, S. J. and CUDMORE, L. J. 2001, Task complexity and habitua-
tion effects on frontal P300 topography, Brain and Cognition, 46, 307-311.

WoLrtz, D. J. 1988, An investigation of the role of working memory in procedural skill
acquisition, Journal of Experimental Psychology: General, 117, 319-331.

YAMAMOTO, S. and MATSUOKA, S. 1990, Topographic EEG study of visual display terminal
VDT performance with special reference to frontal midline theta waves, Brain
Topography, 2, 257-267.

About the authors
Alan Gevins is the founder and Executive Director of the San Francisco Brain Research
Institute and the founder and President of SAM Technology, Inc., both in San Francisco.
He is internationally known for developing algorithms and systems for analysing human brain-
function, and for basic science studies of human neurocognitive functions. He is the author of
over 125 scientific papers and of 16 US patents.



EEG monitoring of cognitive workload 131

Michael E. Smith is a cognitive neuroscientist who specializes in basic and applied research on
the neural systems mediating human attention and memory. He has authored over 50 scientific
papers on related topics. He holds an undergraduate degree from the University of Michigan,
a PhD from the University of California, Los Angeles, and an MBA from the University of
California, Berkeley. He currently directs the research department of SAM Technology, Inc.






