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Abstract

Problem: Fatigue affects a driver’s ability to proceed safely. Driver-related fatigue and/or sleepiness are a significant cause of traffic

accidents, which makes this an area of great socioeconomic concern. Monitoring physiological signals while driving provides the possibility

of detecting and warning of fatigue. The aim of this paper is to describe an EEG-based fatigue countermeasure algorithm and to report its

reliability. Method: Changes in all major EEG bands during fatigue were used to develop the algorithm for detecting different levels of

fatigue. Results: The software was shown to be capable of detecting fatigue accurately in 10 subjects tested. The percentage of time the

subjects were detected to be in a fatigue state was significantly different than the alert phase (P< .01). Discussion: This is the first

countermeasure software described that has shown to detect fatigue based on EEG changes in all frequency bands. Field research is required

to evaluate the fatigue software in order to produce a robust and reliable fatigue countermeasure system. Impact on Industry: The

development of the fatigue countermeasure algorithm forms the basis of a future fatigue countermeasure device. Implementation of electronic

devices for fatigue detection is crucial for reducing fatigue-related road accidents and their associated costs.

D 2003 National Safety Council and Elsevier Science Ltd. All rights reserved.
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1. Introduction will render a person unable to maintain skilled performance;
Driver fatigue is a significant cause of traffic accidents

(Lal & Craig, 2001a, 2001b) and is believed to account for

20–30% of all vehicle accidents (The Parliament of the

Commonwealth of Australia, 2000). Experts agree that this

is a conservative estimate and that the actual contribution of

fatigue to road accidents may be much higher. In addition to

having potentially catastrophic personal consequences, fa-

tigue-related accidents are a substantial financial burden on

the community. Statistical analysis of accident data suggests

that fatigue is implicated in road accidents, particularly at

night (Haworth, Heffernan, & Horne, 1989; Mackie &

Miller, 1978) and in situations in which driving hours are

very long and varied (Åkerstedt, 1995; Hamelin, 1987;

McDonald, 1984). Any activity, if pursued long enough,
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this is as true for driving as any other skill and is a precursor

for accidents (Dinges, 1995; Horne & Reyner, 1995).

In our recent review papers on the issue of driver fatigue,

we identified the importance of developing driver fatigue

countermeasure devices in order to help prevent driving

accidents and errors (Lal & Craig, 2001a, 2001b). Evidence

from the scientific literature suggests reasons for giving

serious consideration to the implementation of technological

countermeasures for driver fatigue. These are:

1. Fatigue is a persistent occupational hazard for profes-

sional or any long-distance drivers who have schedules to

maintain and who may be involved in shift-work.

2. Fatigue impairs cognitive skills; hence, it can adversely

affect the drivers’ ability to assess their level of alertness

in order to continue driving safely (Brown, 1997).

In response to these serious issues, on-line monitoring of

fatigue/drowsiness while driving has the potential to detect,

in real time, dangerous behaviors that are related to fatigue,
ence Ltd. All rights reserved.
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such as eye-closing, head nodding, and brain activity

changes during deteriorations in alertness. To date, most

fatigue countermeasure devices measure some physiological

response in the driver such as the electroencephalogram,

electrooculogram (EOG), respiratory signals, behavioral

recordings such as analysis of the video film of a driver’s

face (Artaud et al., 1994) or changes in the driver’s alertness

through steering behavior (Yabuta, Iizuka, Yanagishima,

Kataoka, & Seno, 1985), and adaptive driver systems

(Michon, 1993). While a variety of potential countermeas-

ures to fatigue have been developed, the effectiveness of

these devices in preventing deterioration in driving perfor-

mance is disappointing (Desmond & Matthews, 1997). This

outcome may be attributable to the failure to take into

account the variation of fatigue effects with changing task

demands (Desmond & Matthews, 1997).

Although numerous physiological indicators are avail-

able to describe an individual’s level of alertness, the EEG

signal has been shown to be one of the most predictive and

reliable (Artaud et al., 1994). However, very little evidence

exists on the efficacy of incorporating EEG signal detection

and analysis into a technological countermeasure device for

fatigue. Researchers have suggested the possibility of using

EEG grouped alpha waves and electrocardiogram in sleep

detection systems (Fukuda et al., 1994; Ninomija, Funada,

Yazu, Ide, & Daimon, 1993). However, no evidence exists

for the efficacy of such a device. Other researchers suggest

that EEG could be used to create an automated system that

continuously tracks and compensates for variations in the

alertness of a human operator (Gevins et al., 1995).

Due to the lack of an EEG-based fatigue detector, we

assessed 35 (26 males, aged 34F 21 years) subjects during

a driver simulator task with the aim to isolate EEG changes

during early, medium, and extreme phases of fatigue during

driving (Lal & Craig, 2002a). We found significant changes

in slow wave activity such as delta and theta during the early

phase, increases in beta during the medium phase, and

further increases in delta, theta, and alpha during the

extreme phase of fatigue. Using the data from the 35

subjects, we subsequently developed fatigue countermea-

sure software that could be used as the basis for a fatigue

countermeasure device that is able to detect the three phases

of fatigue based on EEG changes (described in the Methods

section). The first aim of this study was to describe the

development of an EEG-based fatigue countermeasure al-

gorithm. The second aim was to test the reliability of this

algorithm to detect different phases of fatigue in ‘‘off-line

data analysis’’ mode.
2. Methods

2.1. Brief description of the EEG algorithm

From the data collected in 35 subjects in a previous study

(reported in Lal & Craig, 2002a), an EEG fatigue algorithm
was created. The EEG of drowsiness/fatigue was classified

into transitional (early fatigue phase: between awake and

presence of slow wave activity), transitional–posttransi-

tional (medium fatigue phase: which has characteristics of

both), posttransitional (extreme fatigue phase: early Stage 1

of sleep, dominated by slow wave activity), and arousal

phases (emergence from drowsiness; Santamaria &

Chiappa, 1987). The EEG changes observed during the

alert, transitional, transitional–posttransitional, and post-

transitional phases of fatigue were used to develop the

algorithm that could detect a set of programmed changes

that occur during different phases of fatigue. The average

change in EEG for each of the fatigue phases was computed

as the difference from the alert baseline.

The algorithm was developed using Lab View (version

5.1, National Instruments, USA). The software was

designed to detect the abovementioned four different func-

tional states of the brain. EEG data in these four phases were

categorized into four channels represented in the software

by color panels, which were green, yellow, orange, and red,

respectively (see black/white version in Fig. 1). A color

scale indicated green as a ‘‘safe’’ level (alert) and red as a

‘‘dangerous’’ level of fatigue (posttransitional phase). Yel-

low and orange denoted early (transitional phase) and

medium (transitional–posttransitional phase) levels of fa-

tigue, respectively.

The fatigue software was developed so that it was

capable of analyzing EEG data in real-time as well as

off-line analysis of previously acquired data. It is capable

of acquiring two channels of EEG data. The software uses

an FFT to transform raw EEG data into the frequency

domain. The program then calculates the magnitude, for

each second of data, in each of the delta (0–4 Hz), theta

(4–8 Hz), alpha (8–13 Hz), and beta (13–20 Hz) frequen-

cy bands (Fisch, 1991). The magnitude is calculated as the

sum of the values (in microvolts) within a particular band

of the EEG spectrum.

A section of the data is taken over a period of time that is

representative of the individual’s alert state. These data are

taken from the beginning of the trial before the subject

develops symptoms of fatigue. From this baseline data, the

mean and standard deviation of the magnitudes in each

frequency band are calculated for all three fatigue phases.

Thus, for each channel, the following values are calculated

by the program Dm, Dsd, Tm, Tsd, Am, Asd, Bm, and Bsd.

Where D, T, A, and B represent the magnitude in the delta,

theta, alpha, and beta bands, respectively, and m and sd

represent the mean and standard deviation of those magni-

tudes. For each of the four phases mentioned above, specific

coefficients are used to decide whether the data will be

detected as being in the alert (green), transition to fatigue

(yellow), transitional to posttransitional (orange), or post-

transitional (red) phase. The software then allows baseline

coefficients to be set in terms of the mean and standard

deviation for each band, for example: DT= d1�Dm+

d2�Dsd, where DT represents a threshold in the



Fig. 1. The panel allocation of data into an alert (green), Phase 1: transition to fatigue (yellow), Phase 2: transitional–posttransitional phase (orange), and Phase 3:

post-transitional phase (red). Note: An example of EEG data detection shown in one channel only [detected from one site on the brain, in this instance the Cz

(central) site].
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delta (D) band and d1 and d2 represent coefficients that

define that threshold. Two thresholds can be defined in this

way for each frequency band in each channel.

In addition, a third threshold defined in absolute values

of magnitude allows the software to exclude outliers. The

program then applies algorithmic Boolean logic to define

the alert and three states of fatigue in terms of the instan-

taneous magnitude in each frequency band and the relation

of those magnitudes to the thresholds. Based upon the data

from the 35 subjects, a range of EEG magnitude (mean and

S.D.) values for each phase were programmed into the

software. This algorithm determines the percentage of

EEG data that will be detected as an alert or one of the

fatigue phases for each subject. The software can be

programmed for average EEG effects in a sample or on an

individual basis. The user is able to change the conditional

and combinatorial logic; thus, the software allows different

algorithms of fatigue detection to be tested quickly and

easily. The following section describes the off-line testing of

the efficacy of the algorithm.

2.2. Testing the fatigue countermeasure algorithm

2.2.1. Subjects

Ten male subjects who were licensed truck drivers

were randomly recruited for the study. Subjects were aged

44F 11 years and all gave written consent for the study,

which was approved by the institutional ethics committee.
To qualify for the study, subjects had to have no medical

contraindications such as severe concomitant disease,

alcoholism, drug abuse, and psychological or intellectual

problems likely to limit compliance. This was determined

during the initial interview on a separate day prior to the

study.

2.3. Study protocol

The study was conducted in a temperature-controlled

laboratory as the subjects performed a standardized senso-

ry motor driver simulator task. The driving task consisted

of 10 min of active driving to familiarize the subject,

followed by a maximum of two continuous hours of

driving (speed < 80 km/h) until the subjects showed

physical signs of fatigue. Simultaneous EEG and electro-

oculogram (EOG) measures were obtained during the

driving task. Nineteen channels of EEG were recorded

according to the International 10-20 System (Fisch, 1991),

which spans the entire brain. A monopolar montage was

used; that is, EEG activity was recorded in relation to a

linked-ear reference. Left eye EOG was obtained with

electrodes (Red dot, Ag/AgCl, Health Care, Germany)

positioned above and below the eye with a ground on

the masseter. The EOG signal was used to identify blink

artefact in the EEG data as well as changes in blink types

such as the small and slow blinks that characterize fatigue

(Lal & Craig, 2002a).
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2.4. Data acquisition and frequency domain analysis

The EEG and EOG data were acquired using a multi-

channel physiological monitor (Neurosearch-24, Lexicor,

USA). An individual EEG data point was classified as an

epoch; a basic unit for stored EEG data. Data were sampled

at 256 Hz and the total sample time was individual

dependent until arousal from fatigue by a verbal interaction

from the investigator. A fast Fourier transform (FFT) was

performed on the EEG data using a spectral analysis

package (Exporter, Lexicor). The EEG was defined in

terms of frequency bands including delta (0–4 Hz), theta

(4–8 Hz), alpha (8–13 Hz), and beta (13–20 Hz; Fisch,

1991). For each band, the average EEG magnitude (in

microvolts) was computed as an average of the 19 channels

(representative of the entire head). The EEG of fatigue was

classified into the first appearance of transitional (between

awake and absence of alpha), transitional–posttransitional

(which has characteristics of both), and posttransitional

phases (early Stage 1 of sleep), followed by self-arousals

(alert states on emergence from fatigue; Santamaria &

Chiappa, 1987).

For each phase, 30 successive EEG spectra were gener-

ated using FFT and were averaged to form 30 s means to

derive the EEG magnitude in the four EEG bands. Previous

studies report reliable changes during fatigue and brain

functional states from EEG data spanning 15 s to 1 min

(Gillberg, Kecklund, & Åkerstedt, 1996; Torsvall & Åker-

stedt, 1987). During fatigue, many ‘‘microsleep’’ cycles

spanning transitional through to posttransitional phases

followed by self-arousal periods may occur. The first

complete cycle constituting the three fatigue phases fol-

lowed by a self-arousal phase was analyzed for each

participant.

2.5. Validation of fatigue states

The alert phase and the three different fatigue phases

were classified according to the simultaneous video analysis

of facial features in the EOG outcomes, and a detailed

account of the process was described in our previous study

(Lal & Craig, 2002a). Physical signs of fatigue were

identified using a video image of the driver’s face, linked

in real time with the physiological measures. The video

analysis and the EOG served as independent variables for

fatigue assessment. Specific facial features characteristic of

fatigue observed during the driving task that were used to

identify fatigue included changes in facial tone, blink rate,

eye activity, and mannerisms such as nodding and yawning

(Belyavin & Wright, 1987; Yabuta et al., 1985). The video

image and the EOG, which showed these signs of fatigue,

were used to validate the EEG changes in the different

fatigue phases (as classified by Santamaria & Chiappa,

1987). Our previous study showed that identification of

these physical signs of fatigue in this manner had excellent

reliability demonstrated by a high interobserver and intra-
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observer agreement (88% between three trained observers;

Lal & Craig, 2002a, 2002b). In our previous study (Lal &

Craig, 2002a), we found that during an alert state, there were

fast eye movements with conventional blinks of high

amplitude. During the transitional stage of fatigue, the

majority of subjects (67%) had minimal eye movement

accompanied by yawning episodes (23%). In the transitional

to posttransitional stage, small fast rhythmic blinks were

observed (46%) as well as frequent nodding (23%). In the

posttransitional stage, slow eye movements and slow blinks

dominated (100%) and eyes were either closed or half

closed (69%). On arousal, slow blinks disappeared to be

replaced by conventional blinks (100%).

On appearance of fatigue as classified from the video and

EOG measures (Lal & Craig, 2002a), 30 epochs that

spanned the range of the alert and three fatigue phases were

recorded to test the software’s ability to allocate each epoch

into the correct phase. Secondly, the software was tested for

its ability to detect fatigue from a complete data set (all

epochs) collected for each of the 10 individual subjects and

to identify the proportion of time a subject may be in one

phase or another. To achieve this, the total number of epochs

collected for each subject (which were variable) were run

through the algorithm to identify the percentage of time

each subject was in a particular state during the study.

2.6. Statistical analysis

The 30 epochs identified as representing the alert and the

three fatigue phases from the video and EOG measures were

entered into the software in off-line analysis mode. The

testing of the fatigue algorithm involved identifying the

proportion of epochs that were in the alert and the three

different fatigue phases and allocating the data to the color

panels described previously. In off-line analysis mode, the

data could also be viewed graphically with a line indicating

which panel (i.e., alert or one of the fatigue states) a

particular epoch had been allocated. A repeated measures

ANOVA was performed to identify if differences existed in

the means of the four states detected by the software. A

Scheffé test then identified where the differences existed in

the comparison of the means. The significance level was set

at P < .05 for all analyses performed.
3. Results

The software categorized the simultaneous delta, theta,

alpha, and beta data according to the algorithm into alert,

transition to fatigue, transitional–posttransitional, and post-

transitional phases. Figs. 2 and 3 show an example of EEG

changes according to a topograph display in an individual

subject. The topograph summarizes the EEG data in a color-

coded map. In the topograph, the magnitude values are

shown for defined frequency bands for the different elec-

trode sites in areas of the scalp. The values are color coded



Fig. 2. Shows the topograph of EEG activity in the 1=theta, 2=alpha, and 3=beta bands during an alert state. Note: The darkest shade (specified by a red color)

indicates more activity in the alpha and beta bands (2 & 3) and the gray shade (specified by a blue color) marked with arrows indicates a reduction or lack of

activity in the theta band (1).
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and plotted to produce a continuous color map. The bottom

of each column shows the bandwidths, which are theta (4–

8 Hz), alpha (8–13 Hz), and beta (13–20 Hz). Each oval

topograph depicts a view of the head from above. The color

scale displayed as a bar to the left of the ovals represents

low (blue) to high power (red). The bottom row of the oval

topograph is labeled ‘‘REL’’ (relative). This row maps the

full color scale spectrum across the entire amplitude range

of the three bands. Each topograph is color coded to indicate

how much activity it contains relative to the other two

topographs. The top row of the oval topographs is labeled

‘‘ABS’’ (absolute). When one band has less activity relative

to another band, it is difficult to see the distribution of power

in that band because of the few colors mapped into it. The

absolute frequency measurement solves this problem by

mapping the full color scale spectrum into each band. Fig.

2 shows the EEG activity of alertness, that is, the presence

of alpha and beta activity (indicated by the presence of more

red color in the alpha and beta band). Fig. 3 shows the

topograph during fatigue showing an increase in slow wave

activity, that is, theta in both relative and absolute cases
Fig. 3. Shows the topograph of EEG activity in the 1=theta, 2=alpha, and 3=beta b

-The increase in 1=theta is shown by presence in the darker shade (specified by

-The reduction in 2=alpha and 3=beta is shown by the appearance of lighter shad
(indicated by presence of more red color in the theta band).

Note the simultaneous decrease in alpha and beta activity

(indicated by a decrease in the red color in the alpha and

beta bands).

The total epochs were distributed among each of the four

phases. These epochs were validated according to the video

and EOG analysis, which acted as the control against which

the software allocation of the epochs was compared. The

ability of the software to detect fatigue (validated by the

video analysis of fatigue) was demonstrated by the fact that

the software detected no false positives. A false positive was

defined as detecting fatigue in the absence of facial/EEG

signs of fatigue. Table 1 demonstrates the allocation by the

software of the total number of epochs to the alert and the

three fatigue phases for each subject.

The ANOVA showed that there was an overall difference

in the comparison of the means of the four states (F = 9.15,

df = 3,27, P=.0002). The post hoc analysis found that the

percentage of time the subjects were in the transitional–

posttransitional and posttransitional fatigue phases was

significantly different to the alert phase (P=.003 and
ands during transition to fatigue phase. Note: ABS=absolute, REL=relative.

a red color) in the fatigue state.

es (white-gray) in the fatigue state.



Table 1

Percentage of epochs detected in the different functional states of the brain

Subject

No.

Alert Transition

to fatigue

Transitional–

posttransitional

Posttransitional

1 37.2 27.7 22.0 13.1

2 36.3 14.3 29.4 20.0

3 35.9 22.5 23.7 17.9

4 18.9 27.2 27.7 26.1

5 34.3 46.9 12.6 6.2

6 46.5 28.8 16.8 8.0

7 29.6 39.6 16.6 14.2

8 65.9 16.1 9.1 8.9

9 39.7 17.3 13.1 29.9

10 52.0 32.4 6.0 9.6

AverageF S.D. 39.6F 12.8 27.3F 10.4 17.7F 7.8 15.4F 8.0
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P=.0009, respectively). The software detected a larger

proportion of epochs in the first fatigue state, that is, the

transitional phase to fatigue, compared to the other two

fatigue phases (P < .01). The number of epochs detected in

the transitional to posttransitional and posttransitional

phases was not significantly different. The video and EOG

analysis had identified subjects as being in the alert phase

for an average of 40% of the time, in the transitional phase

for 25% of the time, in the transitional to posttransitional for

20%, and in the posttransitional state for 15% of the total

study time. The percentage error of the algorithm detecting

fatigue compared with video/EOG allocation of fatigue in

the whole data set was as follows: alert = 1%, transition-

al = 9.2%, transitional to posttransitional = 11.5%, and post-

transitional: 2.7%. The largest difference in the two methods

of detection (i.e., video/EOG vs. the algorithm) was ob-

served for the transitional and transitional to posttransitional

phases with error rates of around 10%. We believe that

the ability of the algorithm to detect the different phases at

error rates of around 10% demonstrates impressively high

reliability.
4. Discussion

This paper described a fatigue-detecting algorithm based

on EEG changes and reports the ability of the algorithm to

detect different phases of fatigue. The algorithm was devel-

oped in response to the EEG changes reported during driver

fatigue in previously recorded data (Lal & Craig, 2002a).

The results of testing the software in off-line mode found

that the 10 truck drivers were in a fatigue state for at least

60% of the total time they spent driving in the simulator.

This confirms our previous findings that drivers are at risk

of driving in a fatigue state for a majority of time when the

driving task is monotonous (Lal & Craig, 2002a). Experi-

enced drivers know that they endanger themselves and

others when they ignore the feelings of fatigue, where the

natural end result is falling asleep. Various theories of

fatigue have been explored previously, with driver fatigue

being specifically defined as a state of reduced mental
alertness, which impairs performance in a range of cognitive

and psychomotor tasks, including driving (Williamson,

Feyer, & Friswell, 1996). This theory has been supported

in our previous studies in professional and nonprofessional

drivers (Lal & Craig, 2002a, 2002b). During driver fatigue,

we found increases in slow wave brain activity, specific

changes in EOG, for example, slow eye blinks and behav-

iors such as nodding and yawning (monitored by video; Lal

& Craig, 2002a).

In the current study, the software was shown to be

capable of detecting the three stages of fatigue reliably from

changes in EEG, especially the slow wave variations, and

was validated by video and EOG monitoring. However, it

should be noted that these results represent an initial trial of

the first prototype of the software and a larger study will be

required to replicate these results. This is the first instance in

which a fatigue-detecting software was shown to not only

detect three different phases of fatigue but can also compute

EEG changes simultaneously in the delta, theta, alpha, and

beta bands. In addition, it has the capability to detect fatigue

on an individual basis where an algorithm can be computed

based on the individual’s specific EEG changes during

fatigue. As demonstrated in this study, it can also be

programmed to detect fatigue based on the average changes

that occur in a sample.

Other research has described how the analysis of a

driver’s breathing regularity can contribute to the prediction

of deterioration in alertness (Artaud et al., 1994); however,

this approach has still not been confirmed in an on-road

context. Furthermore, videotaping the driver’s face has also

been reported to have a number of technical hurdles and

little is known about the feasibility of this approach (Artaud

et al., 1994). Others have described adaptive driver systems

with telemetric applications in the car aimed at supporting

the driver, such as route guidance and anticollision (Michon,

1993). However, these applications can distract the driver by

presenting too much information. These types of applica-

tions can lack driver acceptance because of inadequate

warning thresholds (i.e., neither situation-specific nor driver

adapted), and there is certainly no scientific evidence

presented that the systems are designed intelligently to

detect fatigue states (Onken & Feraric, 1997).

To date, few researchers have investigated the use of EEG

as a fatigue countermeasure. Some have developed a system

that detects sleepy states of drivers using grouped EEG alpha

waves and warns them of the dangerous state (Ninomija et

al., 1993). They reported an error in their subsystem in the

magnitude of 25–35%. In order to improve the reliability of

their EEG-based system, these researchers suggest that they

need to monitor the simultaneous electrocardiogram during

driving. The disadvantage apparent in this system is the use

of extra electrodes to monitor two separate physiological

signals making it more cumbersome than having one record-

ing system. The same investigators further describe a system

based on detecting grouped alpha waves using a convolution

with special weighting factors such as moving average
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methods (Fukuda et al., 1994). They reported that the system

separates grouped alpha waves from various kinds of noise

and detects low awakening levels as soon as grouped alpha

waves appear. However, this group has not reported the

further development of their system in a field condition. In

our research, we found that even though alpha increases

during drowsiness, the magnitude of change in the delta and

theta waves are larger and easier to detect (Lal & Craig,

2002a). Furthermore, basing fatigue on one EEG variable

cannot be as reliable as detecting the simultaneous changes

that occur in all the frequency bands. This is the current

sophistication of the software described in the current

research. Since fatigue is a cortical deactivation that affects

all brain waves in one way or the other, it can only be

beneficial to record and detect changes in all bands in a

future EEG-based fatigue-monitoring device.
5. Summary

Further research is required with the fatigue software to

produce a real-time robust and reliable fatigue-detecting/

alerting system. The need for future modifications of the

software has become apparent in this research. In both real-

time and off-line analysis mode, a ‘‘threshold’’ algorithm is

required that can negate major artifacts in the EEG data that

can occur due to coughing, sneezing, and any large extrane-

ous movements as well as vibrational movements due to the

car and the road surface. For example, individual algorithms

need to be incorporated into the software that can detect head

and body movements, large muscle potentials, and eye

movement potentials referenced against an artifact-free cal-

ibration period. Such computer rejection of artifact has been

described in previous research (Hamilton, Curley, & Aimi,

2000) and may form the basis of detecting and eliminating

extraneous signals in the fatigue-detecting system described

in the current research. Hardware, which is being developed

in our unit together with the currently described software,

will form a prototype fatigue-monitoring device. The soft-

ware’s ability to allocate the EEG data into the various color

panels could be used in the future to alert drivers of their

fatigue status. For example, yellow would indicate early

fatigue and red would indicate extreme fatigue. Auditory

feedback could replace the color feedback in the final

commercial device. The next phase of our research will test

the fatigue countermeasure software in real time in a labo-

ratory and field driving trial.

As a result of this research, other parameters became

apparent that need investigation for the feasibility of a

fatigue-monitoring device in an operational setting. In the

laboratory, restrictions on equipment size and weight were of

little concern. However, in an applied setting, these restric-

tions can be important. Furthermore, real-time field trials of

the fatigue-monitoring device are essential. More research

also needs to be carried out on EEG-based electrodes. The

electrodes used with the fatigue monitor should be easy to
connect and able to monitor EEG changes accurately for

long periods. Data reduction should also be quick in real time

in order to manage the suddenly changing fatigue states. We

envisage a device in the future that could be worn on the

head in the form of a band that would detect brain activity

changes of drivers during driving and warn of signs of

fatigue using varying degrees of audible feedback for the

three different levels of fatigue. Even though drivers usually

know they are fatigued, few pay heed to their lapsing

attention levels. It is believed that a device that can provide

immediate and interactive feedback of the driver’s fatigue

state would be more effective in alerting the driver to take

precautions. A device such as this would be useful in many

areas of the transport industry that are prone to driver fatigue

and sleepiness effects, such as in the commercial sector

(National Transportation Safety Board, USA, 1995) as well

as in drivers with clinical symptoms of sleep disorders and

dementia, and in adolescents (Aldrich, 1989; American

Thoracic Society, 1994; Carskadon, 1990; Findley, 1995;

Hansotia, 1997).

As discussed previously, a valid measure of fatigue such

as the EEG seems promising for the development of a

fatigue countermeasure device. The fatigue countermeasure

device must provide a valid indication of fatigue rather than

some type of performance impairment (Desmond & Mat-

thews, 1997). Furthermore, the stimulus delivered when the

performance impairment due to fatigue is detected must

successfully restore normal performance. In the future, such

an enabling technology could be important in the transport

environment that demands alertness and that involves mul-

tiple tasks competing for limited attention resources (Gevins

et al., 1995). With the advances in miniaturization of

equipment, the use of physiological parameters such as

the EEG has become more feasible in operational settings

(Rokicki, 1995). The use of simple on-line frequency

domain analysis procedures to compute the spectral bands

in the EEG forms the basis of the fatigue-detecting software

described in this research. The initial aim would be to apply

the countermeasure device in the commercial driving indus-

try; however, it could also be important in preventing

fatigue-related accidents in nonprofessional drivers.
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