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Automated Vehicle Recognition with Deep Convolutional Neural
Networks

Abstract
In recent years there has been growing interest in the use of nonintrusive systems such as radar and infrared
systems for vehicle recognition. State-of-the-art nonintrusive systems can report up to eight classes of vehicle
types. Video-based systems, which arguably are the most popular nonintrusive detection systems, can report
only very coarse classification levels (up to four classes), even with the best-performing vision systems. The
present study developed a vision system that can report finer vehicle classifications according to FHWA’s
scheme and is also comparable to other nonintrusive recognition systems. The proposed system decoupled
object recognition into two main tasks: localization and classification. It began with localization by generating
class-independent region proposals for each video frame, then it used deep convolutional neural networks to
extract feature descriptors for each proposed region, and, finally, the system scored and classified the proposed
regions by using a linear support vector machines template on the feature descriptors. The precision of the
system varied by vehicle class. Passenger cars and SUVs were detected at a precision rate of 95%. The precision
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receiver operating characteristic curves, the best system performance can be achieved under free flow, daytime
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In recent years there has been growing interest in the use of nonintrusive 
systems such as radar and infrared systems for vehicle recognition. 
State-of-the-art nonintrusive systems can report up to eight classes of 
vehicle types. Video-based systems, which arguably are the most popular 
nonintrusive detection systems, can report only very coarse classification 
levels (up to four classes), even with the best-performing vision systems. 
The present study developed a vision system that can report finer vehicle 
classifications according to FHWA’s scheme and is also comparable to 
other nonintrusive recognition systems. The proposed system decoupled 
object recognition into two main tasks: localization and classification. 
It began with localization by generating class-independent region pro-
posals for each video frame, then it used deep convolutional neural 
networks to extract feature descriptors for each proposed region, and, 
finally, the system scored and classified the proposed regions by using 
a linear support vector machines template on the feature descriptors. 
The precision of the system varied by vehicle class. Passenger cars and 
SUVs were detected at a precision rate of 95%. The precision rates for 
single-unit, single-trailer, and double-trailer trucks ranged between 
92% and 94%. According to receiver operating characteristic curves, 
the best system performance can be achieved under free flow, daytime 
or nighttime, and with good video resolution.

Transportation agencies seeking to optimize traffic mobility and 
improve safety need accurate traffic data. Traditional technologies 
used in traffic data collection, such as piezoelectric sensors, magnetic 
loops, and pneumatic road tubes, have been popular among trans-
portation agencies since the 1960s (1). However, these traditional 
methods are gradually giving way to emerging advanced collection 
technologies, such as active infrared or laser, radar, and video, for 
many reasons, including the damage caused by intrusive traditional 
methods, environmental conditions (e.g., snow) that inhibit their use, 
frequent equipment malfunctions, lack of consistent accurate data, 
and disruptions to traffic during installation (2). With the proliferation  
of advanced traffic data collection technologies, transportation pro-

fessionals must identify the appropriate technology that suits an 
agency’s data collection needs.

One of the many data needs of transportation agencies is vehicle 
type classification (3). Accurate classification data are fundamental to 
traffic operation, pavement design, and transportation planning (4). 
For example, the total number of trucks in a section of a roadway 
is useful for computing the corresponding passenger car equiva-
lents needed to estimate the capacity of that roadway section (5). 
Additionally, the geometric design characteristics of roadways (e.g., 
horizontal alignment, curb heights) are dictated by the types of vehi-
cles that will use such roadways (6). Under federal requirements for 
the Highway Performance Monitoring System, states must perform 
classified vehicle counts on freeways and highways and provide 
this information to FHWA every year (7). Vehicle classification data 
are therefore critical to the effective management and operation of 
transportation systems.

Many techniques for acquiring vehicle type classification have 
been discussed in the literature, and prominent among them is the 
application of image processing techniques such as automated video-
based classification systems. In most instances, classification is based 
on the dimensions of vehicles. Lai et al. demonstrated the estimation 
of accurate vehicle dimensions by using a set of coordinate mapping 
functions (8). Although they were able to estimate vehicle lengths 
to within 10% in every instance, their method requires camera 
calibration to map image angles and pixels into real-world dimen-
sions. Commercially available video image processors such as the 
VideoTrack system developed by Peek Traffic, Inc., are expensive 
and often require calibration to specific road surface information 
(e.g., distance between recognizable road surface marks) as well as 
camera information (such as elevation and tilt angle), which may 
not be easy to obtain (9). Gupte et al. performed similar work by 
instead tracking regions and using the fact that all motion occurs in 
the ground plane to detect, track, and classify vehicles (10). Before 
vehicles can be counted and classified, their program must determine 
the relationship between the tracked regions and vehicles (e.g., a vehi-
cle may have several regions, or a region may have several vehicles). 
Unfortunately, their work does not address problems associated with 
shadows, so application of the algorithm is limited.

Vehicle type classification with advanced techniques such as 
artificial intelligence has been proposed in the literature. Zhou and 
Cheung proposed the use of deep neural networks (DNN) to classify 
vehicles (11). Since their test data set was small compared with the  
number of parameters inside DNN architecture, direct application 
of DNN was not possible. Therefore, they extracted features from 
a specific layer inside a properly trained DNN and transferred them 
to their specific classification task. This approach was used to classify 
cars, sedans, and vans. Hence, its performance on data sets that include 
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trucks is unknown. The support vector machine (SVM) technique has 
been used to conduct multiclass and intraclass vehicle type classi-
fications (12). In that study, two vehicle classification approaches 
that use the SVM algorithm were presented: (a) a geometric-based 
approach and (b) an appearance-based approach. Although combin-
ing geometry and appearance to classify vehicles sounds encouraging, 
the proposed system classifies vehicles into only small, medium, 
and large categories, so its application is limited.

This paper proposes a video-based vehicle detection and classifi-
cation system for classifying vehicles according to FHWA’s 13 vehi-
cle types. The proposed approach takes advantage of recent advances 
in deep convolutional neural networks (DCNN), a machine learning 
technique that quickly and accurately learns unique vehicular fea-
tures that can be used to report finer vehicle classes comparable to 
state-of-the-art nonintrusive recognition systems such as radar and 
microwave systems. The key algorithms of DCNN can be traced 
back to the late 1980s (13). DCNNs saw heavy use in the 1990s. 
However, they fell out of fashion with the rise of SVMs. Interest 
in DCNNs was rekindled in 2012 by Krizhevsky et al. (14), who 
showed that a substantially higher accuracy for image classification 
could be achieved in the ImageNet data set with DCNNs. Since its 
rebirth, profound improvements in the accuracy of object detection 
in complex scenes have been achieved.

The research presented here developed an automated, video-based 
vehicle recognition system that

1.	 Classifies vehicles according to the FHWA classification scheme 
and

2.	 Is robust to challenging real-world conditions such as high-
volume stop-and-go traffic, varying video resolution, and lighting 
conditions.

The outline of this paper is as follows. First, an overview of the 
proposed approach to automated vehicle recognition and classifica-
tion is provided. This section highlights the machine vision algo-
rithms selected for this study, and the training and fine-tuning of the 
algorithm are discussed. In the second section, a brief introduction 
of data used to train the deep learning model is given. Additionally, 
experiments conducted to test the efficiency of the vision system 
developed are discussed in this section. The third section discusses 
results of experiments using the developed vision system to process 
closed-circuit television (CCTV) video data under varying conditions. 

Concluding remarks, recommendations, and additional research 
needs are presented in the fourth section.

Proposed Approach

The vision system developed in this study decouples object recog-
nition into two main tasks: localization and classification. It begins 
with localization by generating class-independent region proposals 
with an algorithm called Selective Search (15). Then it uses DCNN 
to extract unique feature descriptors on the proposed regions after  
warping them to a fixed square size (256 × 256). Finally, feature 
descriptors corresponding to each proposed region are classified 
through a linear SVM scoring system. Figure 1 summarizes the 
proposed approach to automated vehicle recognition.

Object Localization with Selective Search

There are two main traditional approaches for object localization 
in images: segmentation and exhaustive search. Segmentation tries 
to break a single partitioning of an image into its unique objects 
before any recognition (16). This is sometimes extremely difficult if 
there are disparate hierarchies of information in the image. A second 
approach is to localize objects by performing an exhaustive search 
within the image by using various sliding window approaches (17). 
The main challenge in use of exhaustive search alone for object 
detection is that it fails to detect objects with low-level cues.

Uijlings et al. developed Selective Search, an approach that com-
bines the best of both worlds: segmentation and exhaustive search 
(15). It exploits the hierarchical structure of the image (segmentation) 
to generate all possible object locations (exhaustive search). The algo-
rithm uses hierarchical grouping to deal with all possible object scales. 
Then, the color space of the image is used to deal with various invari-
ance properties. Finally, region-based similarity functions are used 
to address the diversity of objects. Figure 2 shows proposed object 
regions resulting from use of selective search.

Object Classification with DCNN

After object localization with selective search, each detected object 
is fed through a DCNN for classification. In this study, a DCNN 
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FIGURE 1    Approach to vehicle detection and classification.
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classifier was built to support key algorithms for classifying vehi-
cles captured on CCTV cameras. The following section explains the 
architecture used to build and test the DCNN classifier.

Model Training

DCNN models are computationally expensive, which makes them 
unattractive for practical applications. The recent interest in DCNNs 
could be attributed to the rise of efficient graphical processing unit 
(GPU) implementations, such as cuda-convnet (14), Torch (18), and 
Caffe (19). In this study, a GeForce GTX Titan X GPU was used for 
model training and processing of videos. Model training involved two 
main steps: supervised pretraining and domain-specific fine-tuning.

Supervised Pretraining

A DCNN model usually consists of thousands of parameters and 
millions of learned weights. Thus, a very large training data set (more 
than a million records) is needed to avoid overfitting the model. 
Girshick et al., however, demonstrated that when labeled data are  
scarce, supervised pretraining for an auxiliary task with large train-
ing data followed by domain-specific fine-tuning (on a smaller data 
set) could significantly boost performance (20). A similar approach 
was adopted here through pretraining the DCNN model on a large 
auxiliary data set (ILSVRC2012) (21) with image-level annotations. 
The resulting output is a rich feature detector that was fine-tuned to 

suit this study’s purposes. The open source Caffe DCNN library 
was used for the pretraining model on 100 classes at a learning 
rate of 0.01.

Domain-Specific Fine-Tuning

To adapt the pretrained model to the proposed task (vehicle recogni-
tion), the CNN model parameters are fine-tuned. First, the 100-way 
classification layer of the pretrained model is replaced with seven 
classes. Stochastic gradient descent is started at a learning rate of 
0.001, which allows fine-tuning to make progress while not clob-
bering the initialization. In each iteration of the stochastic gradi-
ent descent, 20 positive windows for all classes and 70 background 
windows are uniformly sampled to construct a minibatch of size 90. 
DCNN is used to extract a 4,096-dimensional feature vector with 
Caffe’s implementation of CNN by Krizhevsky (14). Each mean 
subtracted candidate region proposal is forward propagated through 
a network with five convolutional layers and two fully connected 
layers. The resulting feature vectors are then scored with linear 
SVMs trained for that specific class. The modeling architecture is 
shown in Figure 3 and is summarized as follows:

1.	 Each class-independent region proposal from the previous 
step is warped to a 256 × 256 image.

2.	 The input warped image is filtered with 96 kernels of size  
11 × 11, with a stride of 4 pixels. This is followed by max pooling 
in a 3 × 3 grid.

(a) (b)

FIGURE 2    Candidate region proposals using selective search.
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FIGURE 3    Architecture of DCNN for vehicle classification (conv = convolution; pool = pooling; FC = fully connected).
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3.	 Two subsequent convolutions with 384 kernels are carried out 
without pooling.

4.	 The output of the fourth layer is convolved with 256 kernels, 
then spatial max pooling is applied in a 3- × 3-pixel grid.

5.	 For the last two layers, a fully connected layer of 4,096 dimen-
sions is extracted from the last layer.

Data Processing and Experiments

The primary sources of data for evaluating the proposed approach 
to vehicle recognition and classification were the Iowa Depart-
ment of Transportation CCTV camera database and 511 Virginia. 
The CCTV cameras covered both freeways and nonfreeway roads. 

They acquired videos of traffic scenes at sampling rates of 12, 25, 
and 30 frames per second. The conditions under which videos were 
acquired varied: day, night, and dawn; snow, rain, and sunshine; and 
congested and noncongested traffic conditions. The cameras had 
different views of traffic (top-down, side, or front views) and were 
installed at varying heights above ground. In other words, the data used 
to develop and evaluate the vision system captured the key challenges 
of conventional automated vehicle recognition and classification 
systems.

The vision system was trained to detect and classify vehicles 
according to the FHWA scheme. However, some of the classes in the 
FHWA scheme had to be merged because of the subtle differences 
between them that could not be visually differentiated in a video. 
Figure 4a illustrates the differences between the FHWA classifica-

FHWA Classification
Class 1. Motorcycles

Class 2. Passenger cars
Class 3. Pickups and vans

Class 4. Buses
Class 5. Single-unit, 2-axle trucks

Class 6. Single-unit, 3-axle trucks
Class 7. Single-unit, 4-axle trucks

Class 8. Single-trailer 3- or 4-axle trucks
Class 9. Single-trailer 5-axle trucks

Class 10. Single-trailer 6+-axle trucks
Class 11. Multitrailer, 5 or fewer axle trucks

Proposed Video-Based Classification
Class 1. Motorcycles

Class 2. Passenger cars
Class 3. Pickups and vans

Class 4. Buses
Class 5. Single-unit trucks
(FHWA Classes 5, 6, 7)

Class 6. Single-trailer trucks
(FHWA Classes 8, 9, 10)

Class 7. Multitrailer trucks
(FHWA Classes 11, 12, 13)Class 12. Multitrailer, 6-axle trucks

Class 13. Multitrailer, 7 or more axle trucks

Proposed Class 5

Proposed Class 6

Proposed Class 7
FHWA Class 11. Multitrailer, 5 or Fewer Axle Trucks FHWA Class 12. Multitrailer, 6-Axle Trucks

Class 8. Single Trailer,
3- or 4-Axle Trucks

Class 9. Single Trailer,
5-Axle Trucks

Class 10. Single Trailer,
6+-Axle Trucks

Class 5. Single Unit,
2-Axle Trucks

Class 6. Single Unit,
3-Axle Trucks

Class 7. Single Unit,
4-Axle Trucks

FHWA Class 13. Multitrailer, 7 or More Axle Trucks

(a)

(b)

FIGURE 4    Merged classes (22).
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tion scheme and the proposed video-based classification approach. 
An illustration of the classes that were merged is given in Figure 4b. 
The key difference between merged classes is the number of axles. 
The view angle and height of CCTV cameras make it challeng-
ing to distinguish different vehicle types solely on the basis of axle 
configurations. Reducing the height and using a side camera view 
instead of a top-down view could be useful in this case. However, such 
a configuration will increase occlusions, especially during congested 
conditions.

Training and Test Set

The CCTV camera data acquired from all the sources were divided 
into training and test sets. The training set is used to help the DCNN 
model learn unique features of the types of vehicles. The test set is used 
to evaluate how accurately the model learns from the training data.

Training Database

The training database contains a set of positive and negative image 
samples. A positive image sample denotes images that contain 
either one or more of the seven proposed vehicle classes. A nega-
tive sample does not contain the target object to be identified. These 
images have associated bounding box annotation labels that indi-
cate the specific location (top-left and bottom-right corners) of the 
target object. The total positive training samples generated for each 
category class are shown in Figure 5. The background objects of 
positive image samples were used as negative samples. For each 

positive image, three background objects were randomly sampled 
as negatives.

The total time required for training the DCNN network on a 
Titan X GPU was approximately 3 h.

Test Database

The test set consisted of 30 randomly selected videos, each with 
approximately 5 min of footage. The videos were manually tagged 
according to vehicle location (top-left and bottom-right corners), 
vehicle class (Classes 1 through 7), and video frame number. All 
videos in the test set were analyzed with the developed DCNN 
model and OpenCV (23). For each video frame, the selective search 
algorithm was used to identify candidate region proposals. Features 
were then computed for all region proposals, and a linear SVM was 
used to classify each object proposal. Each frame of the processed 
video returned an output indicating which of the seven vehicle 
classes was detected.

Experimental Results and System 
Performance Evaluation

To evaluate the performance of the developed system, outputs from 
the vision system were compared with results from the manually 
tagged videos in the test database. Precision and recall rates defined 
in Equations 1 and 2 were used as the measure of the system’s overall 
performance. A true positive (TP) represents a detected and cor-
rectly classified vehicle that has a corresponding manually tagged 
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FIGURE 5    Histogram showing proportion of training image set per category class.
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object in the test database. A false positive (FP) represents a detected 
and classified vehicle that has no corresponding manually tagged 
object in the test database. A detected but misclassified vehicle was 
denoted as a false positive even if it had a corresponding manually 
tagged object. A false negative (FN) represents objects that were 
missed by the vision system.

precision
TP

TP FP
(1)=

+

recall
TP

TP FN
(2)=

+

Figure 6 gives examples of positive, false, and missed calls from 
the vision system. Figure 6, a and b, gives examples of vehicles that 
the vision system correctly recognized. False detections are shown in 
Figure 6, c and d. In Figure 6c, a Class 5 vehicle towing a Class 3 
vehicle is falsely classified as Class 3. In Figure 6d, the detected 
truck has no trailer and therefore could belong to either Class 6 or 
Class 7; however, the system classifies it as a Class 6–type vehicle. 
Missed objects as shown in Figure 6, e and f, were prominent in  
cameras with very poor resolution. Also, distance between the 
camera and the object may influence the accuracy of the vehicle 
classification. For example, a double-trailer truck may begin to look 
like a single-trailer truck as the vehicle moves away from the cam-
era. Figure 7a illustrates the average precision and recall rates of 
the vision system for detecting all seven classes of objects from 
videos in the test database. On average, the developed vision system 
correctly detected and classified vehicles in the test database 95% 

(average precision) of the time; 93% (recall rate) of all vehicle types 
in the test database were detected and classified.

Classes 1 and 4

Despite limited training data for Class 1 and Class 4 vehicle types, 
motorcycles and buses are the simplest objects to recognize with the 
system developed and hence have a 100% precision rate. They are 
easily distinguishable from other classes, as shown in the confusion 
matrix in Figure 8. Because of the size of Class 1 vehicles, they are 
likely to be missed in poor-resolution videos or to be occluded by 
larger trucks and hence have a relatively low recall rate.

Class 2. Passenger Cars and SUVs

The system was able to recognize correctly vehicles belonging to 
Class 2 95% (precision) of the time. Class 2 vehicles constitute the 
largest proportion of vehicular traffic. Hence, this precision rate is 
appreciable. However, 89% (recall) of all Class 2 vehicles in the test 
database were recognized. The relatively lower recall rate was caused 
mainly by occlusions by trucks.

Class 3. Vans and Pickups

The system was least effective for recognizing Class 3 vehicles. 
It correctly recognized vehicles belonging to this class only 82% 
of the time, although 90% (recall) of all Class 3 vehicles in the test 
database were recognized. The box plot of precision rates for Class 3  

(d)

Class 5 Class 6 Class 7

Class 1 Class 2 Class 3 Class 4

(a)
(c)

(e)

(b)

(f)

FIGURE 6    Vision system output examples: (a and b) true positives, (c and d) false positives, and (e and f ) misses.
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FIGURE 7    Performance evaluations: (a) average precision and recall rates of system and (b) range of precision 
rates for all 30 videos in test database.

shows the most variation, ranging between 73% and 98%. The drastic 
drop in precision rates was caused by the inclusion of pickup trucks 
in this category class. Pickup trucks come in various forms: covered, 
uncovered, single or double cabin. The system confuses covered 
pickup trucks with SUVs, which belong to a different class. Also, 
single-cabin pickups are considered to be of Class 2. The confusion 
matrix in Figure 8 confirms this observation. Distinguishing between 
single- and double-cabin pickups from a top-down-view CCTV 
camera can be challenging even to the human eye.

Class 5. Single-Unit Trucks

The average precision and recall rates for Class 5 shows that the 
vision system had few difficulties recognizing vehicles belonging to 

this category. Most of the false positives (although few) in this cate
gory were related to single-unit trucks towing a Class 2 or Class 3  
vehicle (Figure 6c), which confused the system and mostly led to 
misclassification. From the confusion matrix, this error happens only 
4% of the time. Some trucks were missed if the system could see 
only a distant rear view and not the front of the truck. Truck-to-truck 
occlusions were also observed in some cases.

Classes 6 and 7. Single Trailer and Multitrailer

Single trailers and multitrailers also had appreciable precision and 
recall rates even in videos of very poor resolution and in congested 
conditions. The confusion matrix in Figure 8 shows that Classes 6 
and 7 are easily distinguishable from the other five classes. However, 
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a multitrailer begins to look like a single trailer as the truck moves 
away from the camera, a reason for a relatively higher false positive 
rate for Class 6. Another source of false positive detections is trucks 
whose trailer has been removed (Figure 6d). Such situations mostly 
confused the vision system. The system missed some trucks belong-
ing to this category if it could see only a distant rear view and not 
the front of the truck. Truck-to-truck occlusions were observed in 
some cases.

Sensitivity Analysis

Finally, conditions and configurations that could influence the 
performance of the developed vision system were investigated. The 
sensitivity of the proposed system to three key conditions was evalu-
ated: the influence of time of day on vehicle recognition (day and 
night), the prevailing traffic conditions (free flow and congested, stop-
and-go traffic), and camera resolution (blurring, sampling rates, rain, 
and snow). To evaluate the sensitivity of the system, the test database 
was partitioned into eight subgroups according to the combination of 
factors influencing the effectiveness of the vision system.

The vision system was used to process videos from each of these 
subgroupings. Receiver operating characteristics (ROC) curves 
were then used to compare the performance of the system per each 
subgroup according to true positive versus false positive rates. True 
positive and false positive rates are defined in Equations 3 and 4:

TPr
TP

TP FN
(3)

( )
=

+

FPr
FP

FP TN
(4)

( )
=

+

where TPr is the true positive rate and FPr is the false positive rate, 
and TN is the total number of nonvehicular objects that were not 

classified as vehicles. For a poorly constructed vision system, as 
its sensitivity (true positive rate) increases, it loses the ability to 
discriminate between vehicular and nonvehicular objects such as 
shadows, buildings, or trees. As a result, the true positive and false 
positive rates are almost directly proportional. Conversely, the mark 
of a good vision system is that its true positive rates are marginally 
higher than the corresponding false positive rates. Figure 9a shows 
the ROC curves for each subgrouping, and Figure 9b gives the 
calculated area under each curve.

Figure 9 shows that the true positive rates are marginally higher 
than the corresponding false positive rate irrespective of traffic 
condition or camera configuration. However, it is evident that the 
prevailing traffic conditions have an impact on the performance of  
the vision system. Under congested conditions, the system can reach a 
high true positive rate (90% or more) only if it incurs a false positive 
rate between 25% and 55%. During free-flow conditions, the system 
generally incurs between 5% and 30% false positives to reach a high 
true positive rate of 90% or more. Figure 9b shows an observable 
difference between the areas under the curve for free flow and that 
for congested conditions. The influence of video quality on system 
performance is minimal during free-flow conditions. Marginal effects 
of poorly resolved videos, however, are observed when traffic con-
ditions are congested and the time of day is nighttime. Generally, 
the system is relatively more effective at processing daytime videos. 
Under free-flow conditions, the influence of time of day is insignifi-
cant. The influence of the time of day is critical when video resolution 
is low and the traffic condition is congested.

Figure 9 also suggests that although the system is robust to con
ditions such as time of day and video resolution, the combined 
effect of these factors could drastically degrade the performance 
of the system. For example, if the traffic condition is congested and 
at the same time video resolution is poor and the time of day is 
nighttime, the false positive rate reaches 45% for a true positive 
rate greater than 85%. To get the best results out of the system in 
such conditions, the use of a camera with frame rates greater than 

FIGURE 8    Confusion matrix for vehicle classes. (The color scale corresponds to the 
magnitude of the values: the darker the color, the higher the value.)
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30 frames per second is suggested. Also, areas where video cam-
eras are mounted should be well illuminated, which will reduce the 
combined influence of camera resolution and time of day on the 
performance of the system.

Summary and Conclusions

The performance of video-based recognition systems for intelligent 
transportation systems purposes has stagnated in recent years. The 
best-performing systems can report only up to three or four classes, 
compared with the 13 classes required by FHWA’s vehicle clas-
sification scheme. This study took advantage of recent advances in 
machine vision and high-performance computing to accurately learn 
unique vehicular features that can be used to report finer classifications 
comparable to those of other nonintrusive recognition systems.

The developed vision system achieved average precision rates of 
between 82% and 100% and average recall rates of between 89% 
and 99% for seven classes of vehicles. Motorbikes and buses are the 
classes most easily recognized by the system, followed by passenger 
cars and single- and double-trailer trucks. Class 3 vehicles, which 
include vans and pickup trucks, were the most challenging to the 
system. ROC curves were used to evaluate the sensitivity of the sys-
tem to various camera configurations, traffic, and lighting conditions. 
Overall, the best system performance can be achieved under free-flow 
traffic, during the day or at night, with good video resolution. Under 
congested conditions, the user is likely to incur between 15% and 
30% false positive rates to achieve a true positive rate greater than 
90%. However, the performance of the proposed vision system under 
congested conditions during the day is significantly better than that 
at night.

This performance was achieved through two main tasks. First, the 
selective search algorithm was used to generate class-independent 
region proposals to localize and segment objects. Second, DCNN 
descriptors for each proposed region were extracted and classified 
through a linear SVM scoring system.

Future studies should look at model architectural designs, which 
could be used to increase the number of classes that can be accu-
rately distinguished by the vision system. Also, tracking algorithms 
could be built to aid in vehicle counting and other traffic management 
tasks, such as congestion detection and stranded-vehicle detection. A 
comparison with existing automated video-based vehicle recognition 
systems also would be expedient.
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