
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327131222

Automatic Vehicle type Classification with Convolutional Neural Networks

Conference Paper · June 2018

DOI: 10.1109/IWSSIP.2018.8439406

CITATIONS

3
READS

807

4 authors, including:

Gustavo H. G. Matsushita

Universidade Federal do Paraná

4 PUBLICATIONS   8 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Gustavo H. G. Matsushita on 22 May 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/327131222_Automatic_Vehicle_type_Classification_with_Convolutional_Neural_Networks?enrichId=rgreq-67d71c2077e6826261edf5095e82066d-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEzMTIyMjtBUzo3NjE0NjIzNTYxODkxODZAMTU1ODU1ODE4MTgzNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/327131222_Automatic_Vehicle_type_Classification_with_Convolutional_Neural_Networks?enrichId=rgreq-67d71c2077e6826261edf5095e82066d-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEzMTIyMjtBUzo3NjE0NjIzNTYxODkxODZAMTU1ODU1ODE4MTgzNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-67d71c2077e6826261edf5095e82066d-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEzMTIyMjtBUzo3NjE0NjIzNTYxODkxODZAMTU1ODU1ODE4MTgzNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Matsushita?enrichId=rgreq-67d71c2077e6826261edf5095e82066d-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEzMTIyMjtBUzo3NjE0NjIzNTYxODkxODZAMTU1ODU1ODE4MTgzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Matsushita?enrichId=rgreq-67d71c2077e6826261edf5095e82066d-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEzMTIyMjtBUzo3NjE0NjIzNTYxODkxODZAMTU1ODU1ODE4MTgzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Parana?enrichId=rgreq-67d71c2077e6826261edf5095e82066d-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEzMTIyMjtBUzo3NjE0NjIzNTYxODkxODZAMTU1ODU1ODE4MTgzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Matsushita?enrichId=rgreq-67d71c2077e6826261edf5095e82066d-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEzMTIyMjtBUzo3NjE0NjIzNTYxODkxODZAMTU1ODU1ODE4MTgzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Matsushita?enrichId=rgreq-67d71c2077e6826261edf5095e82066d-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEzMTIyMjtBUzo3NjE0NjIzNTYxODkxODZAMTU1ODU1ODE4MTgzNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Automatic vehicle type classification with
convolutional neural networks

Max N. Roecker∗, Yandre M. G. Costa∗, João L. R. Almeida∗, Gustavo H. G. Matsushita†
∗Departament of Informatics – State University of Maringá, Maringá, Paraná, Brazil
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Abstract—This paper proposes a convolutional neural network
model for classification of vehicle types with low-resolution
images from a frontal perspective. This characteristic can be
useful to the development of systems with limited resources, like
embedded systems. We trained the model as a multinomial logistic
regression where cross-entropy of the ground truth labels and
the model’s prediction estimates the error. To prevent overfitting,
we performed data augmentation in the training dataset and
regularized the model using the dropout method. Experimental
results in a subset of the BIT-Vehicle Dataset with samples
uniformly distributed between classes shows that the model
achieves an accuracy of 93.90%. We conclude that the model
is discriminative and capable of generalizing the patterns of the
vehicle type classification task.

Keywords—vehicle classification, convolutional neural net-
works, machine learning, computer vision, pattern recognition.

I. INTRODUCTION

Object classification is a large field of research in computer
vision and machine learning that aims to classify objects
present in images into meaningful categories [1]. In the context
of intelligent traffic systems, object classification of vehicles
assumes a fundamental role and have a wide range of em-
ployment such as traffic surveillance, route optimization, and
anomaly detection.

Humans can classify vehicles in images using key aspects
such as trademarks, forms, and ornaments. For computer
systems, however, the vehicle type classification in images
can be a challenging task because image inputs have high-
dimensional features [1] and vehicles have a wide variation in
form, size, and color. Also, the acquisition of images in the
traffic is subject to environmental conditions such as lighting,
noising, partial occlusion, and weather.

In the last years, several works proposed methods for vehi-
cle type classification in digital images. Dong et al. [2] group
these approaches in two categories: model-based methods and
appearance-based methods. Model-based methods address the
problem using dimensional attributes of the vehicle, such as
length, area, and height, to create a model and classify it [3]
[4]. On the other hand, appearance-based methods address the
problem by extracting visual features from the vehicle, such
as edges, filters and visual descriptors [5] [6].

Every day, traffic surveillance cameras acquire a large num-
ber of vehicles’ frontal view images. In these circumstances,
the use of an appearance-based method is a better alternative,
since the model-based method may perform poorly due to the
lack of variance of perspectives in viewpoints. However, most

of the appearance-based methods use multiple handcrafted
features, which cannot efficiently describe the complexity of
the patterns for vehicle type classification in images.

In the last years, methods inspired on the biological behav-
ior of the of the mammal’s visual cortex were proposed, in-
cluding the NeoCognitron [7], the HMAX (Hierarchical Model
and X) [8] and the CNN (Convolutional Neural Networks) [9].
Convolutional Neural Networks, a specialized kind of neural
network for processing data that have spatial interactions,
have gained prominence recently due to its high capacity to
generalize patterns in images. This characteristic is useful for
the vehicle type classification task as it minimizes the problems
previously mentioned.

In this paper, we proposed a simple model to classify
vehicle images into six types: truck, bus, sedan, microbus,
minivan, and SUV; using a low-resolution input and tiny
convolutional filters. As a result, using supervised training
with high-intensity data augmentation, we achieved state-of-
art accuracy on the BIT-Vehicle Dataset [2].

This paper is organized as follows. Section II presentes
some related works with its highligths and results. In Section
III, we describe the model including the architecture and
configurations. We present the methodology of the training
and evaluation in Section IV and in Section V the results are
showed and compared with others models that were evaluated
in the original or modified version of the BIT-Vehicle Dataset.
Section VI concludes the paper.

II. RELATED WORKS

Convolutional networks [9], also known as Convolutional
Neural Networks (CNN), are a specialized kind of neural
network for processing data that have spatial interactions. The
“convolutional” name part indicates that the network employs a
convolution operation in place of general matrix multiplication
in at least one of its steps [10].

In recent years, the convolutional networks have been used
to address the vehicle type classification task, but with distinct
datasets and approaches. Dong et al. [2] propose a vehicle type
classification method using a semi-supervised convolutional
network from vehicle frontal-view image of the BIT-Vehicle
Dataset, also introduced in [2]. The architecture of the model
consists of two convolutional stages, and each stage contains
a convolution, a non-linearity absolute rectification, a local
contrast normalization, and average pooling. The input of the
first stage is the image, and the output of the first stage is
the input of the second stage. The fully connected stage takes



as input the fusion of the outputs of the first and the second
stages. In the end, the model outputs the probability of each of
the six vehicle types: Bus, Microbus, Sedan, SUV, and Truck.
To achieve an accuracy of 88.11%, Dong et al. [2] also employ
a Laplacian Filter to obtain the initial value for the kernels of
the network with large amounts of unlabeled data.

Selbes and Sert [11] address the vehicle type classification
task using a multimodal method from videos of traffic scenar-
ios, extracting both image’s and audio’s features and fusing it
to feed a Support Vector Machine (SVM) multiclassifier. To
extract the image-based features, the authors use the trained
versions of the renowned convolutional network’s architectures
AlexNet [12] and GoogleNet [13]. Mel-frequency Cepstral
Coefficients (MFCCs) are used to extract audio-based features
from the video. The SVM then classify each video snippet as
an armored vehicle, a construction vehicle, a crane vehicle,
an emergency vehicle, a military vehicle, a motorcycle, and
a rescue vehicle. This multimodal method achieves 72.1%
accuracy.

Kim and Lim [14] propose a new scheme of vehicle type
classification for multi-view images of surveillance cameras
using convolutional networks with data augmentation, boot-
strap aggregating (bagging) and, a post-processing voting be-
tween the models of the bagging method. The model consisted
of seven independently trained convolutional networks with the
same characteristics that output a prediction by voting. Inspired
by the works of Simonyan and Zisserman [15], the authors
modeled all the convolutional networks very deep with fifteen
convolutional layers. The model was evaluated in a subset of
the ImageNet Dataset with eleven classes: articulated truck,
background (negative examples), bicycle, bus, car, motorcycle,
non-motorized vehicle, pedestrian, pickup truck, single-unit
truck and work van; achieving an accuracy of 97.84%.

III. MODEL DESCRIPTION

Motivated by the works of Cireşan et al. [16], Krizhevsky
et al. [12] and Simonyan and Zisserman [15], we designed all
the stages of the model with the same principles to simplify the
model and minimize setup of hyperparameters. In this section,
firstly we present the specific configurations and then detail the
layout of the architecture of the model (Subsection III-A). The
design choices are discussed and compared with other models
in Subsection III-B.

A. Configurations

The model receives as input an RGB image with 32 pixels
in width and 32 pixels in height, i.e., the input is a tensor with
the shape of 32 × 32 × 3. The input pass through a stack of
convolutional layers, where a variable number of filters with a
size of 3×3, the smallest size to capture a notion of direction.
We fixed the convolution stride at one point and preserved the
spatial padding, i.e., the output of the convolution has the same
size as the input by adding a zero-valued border in the input.

The output of the convolution is set up with the leaky
rectifier activation function (LReLU) instead of the traditional
rectifier (ReLU). Maas et al. [17] demonstrated that in some
cases the ReLU activation could ”kill” some neurons when all
of its weights become zero and cannot activate. A LReLU
activation ι : R → R is defined as ι(x) = max(x, αx)

TABLE I. ARCHITECTURE OF MODEL.

# Layer type Input units Parameters units Stride (x, y)

1 Convolutional 32 × 32 × 3 3 × 3 × 32 (1, 1)

2 Convolutional 32 × 32 × 32 3 × 3 × 32 (1, 1)

3 Pooling 32 × 32 × 32 2 × 2 (2, 2)

4 Convolutional 16 × 16 × 32 3 × 3 × 64 (1, 1)

5 Convolutional 16 × 16 × 64 3 × 3 × 64 (1, 1)

6 Pooling 16 × 16 × 64 2 × 2 (2, 2)

7 Fully-connected 4096 512 –
8 Fully-connected 512 512 –
9 Fully-connected 512 6 –

10 Softmax 6 6 –

where α ∈ {x ∈ R | 0 < x < 1}. In this model, we
fixed α = 0.01 as an hyperparameter. A spatial pooling
finalizes each stack of convolutional layers. The spatial pooling
performs a maximum-value subsampling over a 2 × 2 pixel
window with a stride of 2.

A stage of three fully-connected layers follows the end of
the convolutional stage. The fully connected layers have the
structure similar to multi-layer perceptron (MLP) that receives
as input the result of the convolutional stage. The first two
layers have 512 units and the third one, as it performs the
classification, has 6 units. All the fully-connected layers are
also set up with a LReLU with α = 0.01.

The last stage of the model takes the fully-connected
stage’s output applies a normalized exponential function (soft-
max) and “squashes” a vector of arbitrary real values into
probabilities that add up to one.

Table I describes the model architecture evaluated in this
work. The column “Input units” displays the number of units
that the layer receives and the “Parameters units” presents the
number of parameters (weights) in the layer. Both columns
are in the “width × height × depth” format at convolutional
layers and in the “width × height” format at pooling layers.
The “Stride” column shows the stride of the convolution and
pooling operations in the (x, y) axis.

B. Discussion

The model presented in this paper is distinct from the
model used by Dong et al. [2] to classify the BIT-Vehicle
Dataset. Firstly, we employed small kernel sizes throughout
the whole model rather than using large filters (e.g., 9 × 9
with (1, 1) stride as used by Dont et al. [2]). Our model is
also serial, i.e., each the layer only takes as input the output
of the previous layer. There is no fusion nor parallelization of
convolutional feature maps.

A stack of two convolutional layers (without spatial pool-
ing) has an effect of a 5×5 filter, as can be seen in the model.
It is preferable to use a stack of two 3×3 convolutional layers
instead of a 5×5 because it can be incorporated two non-linear
rectifications instead of one, which makes the decision function
more discriminative [16] [15]. The model also does not employ
a Local Response Normalization (LNR) [12] since its use does
not improve the performance and it leads to increased memory
consumption and computation time [15].



Fig. 1. Some samples of the BIT-Vehicle dataset. All vehicles in the dataset
fall into one of six types: Bus, Microbus, Minivan, Sedan, SUV, and Truck.
Source: [2]

Fig. 2. The image crop approaches in the BIT-Vehicle Dataset. The red
square represents the dataset annotation of the vehicle detection. The green
squared is the actually sample used as input in the model.

IV. EVALUATION METHODOLOGY

In this section, we describe some details about the dataset
used in the evaluation of the model created (Subsection
IV-A), the training procedure and the methodology of the
tests (Subsection IV-B) and, some technical details of the
implementation (Subsection IV-C).

A. Dataset and Preprocessing

The BIT-Vehicle Dataset [2] is a challenging dataset com-
posed of 9,850 vehicle images in high resolution (1600×1200
px and 1920 × 1080 px). Figure 1 shows some samples of
the dataset. The images are in a wide range of changes in
illumination, scale, surface color and position of the vehicles.

Each image may contain more than one vehicle, and so
the dataset also contains the annotation of each bounding box
of each vehicle in the image. Since the input of the model
must receive an image with a 1:1 aspect ratio, each sample
was cropped off the image mapped by a square bounding box
sized equal to the most significant dimension of the database’s
bounding box annotation: height or width. The centroid of the
annotation box serves as the centroid of the square box. Figure
2 illustrates the differences between the bounding boxes of

a vehicle given by the annotation in the dataset (in red) in
contrast to the actual crop that will feed the model (in green).
This approach has a downside of adding more background
information into the sample since the bounding box rarely has
the aspect ratio of 1:1. However, it minimize distortions in the
input that can lead to a wrong generalization of the model.

All the samples in the dataset are labeled according to
one of six classes: Bus, Microbus, Minivan, Sedan, SUV,
and Truck. The numbers of samples per class are 558, 883,
476, 5,922, 1,392, and 822, respectively. As can be seen, the
distribution probability of the classes is far from uniform, with
a coefficient of variation almost equal to 1.27. To meet the
uniformity in the dataset, we create a subset of 476 randomly
selected samples of each class; totaling 2,856. All the samples
selected were resized to a 32× 32 RGB image. Then samples
were uniformly distributed into three sets: the training, testing,
and validation sets containing proportions of 65%, 30%, and
5%, respectively. Right before entering the model, we also
applied a normalization of the values of all image channels
and transforming it from an interval from [0, 255] to [0, 1]. No
contrast normalization or mean subtraction was performed.

B. Training and testing

The training procedure follows Krizhevsky et al. [12] and
Simonyan and Zisserman [15]. Since all the classes are mutu-
ally exclusive, the training consists of optimising a multinomial
logistic regression (softmax regression). The error of the model
was defined as the cross-entropy of the prediction and the label
of the sample. Thus, let y be the a label of the dataset and ŷ a
prediction of the model, the cross-entropy of y and ŷ, denoted
as H(ŷ,y), is defined as H(ŷ,y) = −y · log (ŷ), where · is
a dot product.

The training was regularized by dropout regularization in
the first two fully connected layers. According to Srivastava
et al. [18], consider a neural network with L hidden layers.
Let l ∈ {1, 2, . . . , L} index the hidden layers of the network.
Let z(l), y(l), W l and b(l) denote the vector of inputs, the
vector of outputs, weights and the vector of biases of layer l,
respectively; where y(0) = x. The feed-forward operation of
a standard neural network can be described as

z
(l+1)
i = w

(l+1)
i y(l) + b

(l+1)
i ,

y
(l+1)
i = f(z

(l+1)
i )

for l ∈ {0, 1, . . . , L − 1} and for any i hidden unit where
f is an activation function. With dropout regularization, the
feed-forward operation becomes

r
(l)
j ∼ Bernoulli(p)

ỹ(l) = r(l) ◦ y(l)

z
(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i

y
(l+1)
i = f(z

(l+1)
i )

where ◦ denotes the Hadamard product of the tensors. For
any layer l, r(l) is a vector of independent Bernoulli random



variables each of which has a probability p of being 1. This
vector is sampled and multiplied element-wise with the outputs
of that layer, y(l), to create a thinned output ỹ(l) that the
next layer uses as input. This process is applied to each
layer. During the training phase, we fixed p = 0.5 as a
hyperparameter.

The optimization approach consists of mini-batch gradient
descent with the Adam Algorithm [19]. The batch size was set
to 128 and the exponential decay rates β1 and β2 were set to
0.9 and 0.999. The learning rate was set at 10−3 and do not
decay in the training procedure. It stopped the training process
after 64 epochs.

Since the dataset used to evaluate the model was subsam-
pled from the original, to prevent overfitting, we applied a
data augmentation in the training set. The data augmentation
consisted of adding random variations in each image including
translation, rotation, blur, sharpening, brightness, and satu-
ration. Figure 3 shows some examples of samples after the
augmentation process. Each one of the samples generates 15
new augmented samples, thus increasing the total number of
samples in training set from 1,860 to 29,760.

The initialization of the parameters in a neural network
model is important since inaccurate initialization can lead to
stall the optimizer due to the instability of the gradient in
training nets. For the convolutional layers, we followed the
initialization scheme proposed by He et. al [20], where the
kernels’ weights were initialized with values drawn from a
distribution ic ∼ N (0, σ2

c ), a normal distribution with mean
equal to zero and variance σ2

c = 2/n where n is the number of
the input units. Differently, for all the fully-connected layers,
we followed the initialization proposed by Glorot and Bengio
[21], where the units’ weights were initialized with values
sampled from a distribution if ∼ N (0, σ2

f ), where σ2
f = 2/m

and m is the sum of the number of units in the input and
output of the layer. All the initial values of bias parameters
were zero.

Fig. 3. Some resized samples of the augmented BIT-Vehicle dataset. There
are a random number of variations in each image such as translation, rotation,
blur, sharpening, brightness, and saturation.

TABLE II. MODEL’S CONFUSION MATRIX ON THE BIT-VEHICLE
DATASET

Actual
Predicted Bus

Microbus

Minivan
SUV

Sedan
Truck

Bus 138 0 0 0 0 0
Microbus 0 134 3 0 4 2
Minivan 2 2 135 0 2 4
SUV 0 2 0 135 12 1
Sedan 1 3 1 7 123 0
Truck 1 1 3 0 1 135

TABLE III. PRECISION, RECALL, AND F-MEASURE BY EACH CLASS.

Bus
Microbus

Minivan
SUV

Sedan
Truck

Precision (%) 97.18 94.37 95.07 95.07 86.62 95.07
Recall (%) 100.00 93.71 93.10 90.00 91.11 95.74
F-Measure (%) 98.57 94.04 94.08 92.47 88.81 95.41

C. Implementation details

The implementation of the model used the open-source
software library TensorFlowTM1, allowing the model to per-
form computation in heterogeneous environments, such as
CPUs or GPUs. The data augmentation was made with the
open-source computer vision libraries OpenCV2 and scikit-
image3. The model was trained on a system equipped with
one NVIDIA GeForce GTX 1050ti with 4 GB, and it took
4–5 hours to converge.

V. RESULTS

In this section, we present the results of vehicle image
classification in the test dataset described in Section V-A. We
also compare the results with other related works in Section
V-B.

A. Results on the BIT-Vehicle Dataset

The results of the model in the testing sets achieved
93.90% accuracy. The confusion matrix is presented in Table
II. From the matrix, the SUV and Sedan classes holds most
of the misclassifications due to these type of vehicle have
considerably similar appearances. This characteristic is also
present in the works of Dong et al. [2], but in that case,
is the “SUV” class that presents the lower accuracy rates.
The model is capable of precisely classify vehicle in images
in challenging conditions, and the convolutional network can
adjust its parameters to the augmented training set. The results
of the Precision, Recall and F-Measure by class can be seen
in the Table III.

B. Comparison of the results

When comparing the performance of the proposed model
with other models’ results evaluated with an original or mod-
ified version of the BIT-Vehicle Dataset, summarized in Table
IV, our model achieves a better accuracy rate than the methods
enumerated.

1https://www.tensorflow.org/
2https://opencv.org/
3http://scikit-image.org/



TABLE IV. COMPARISON BETWEEN OUR MODEL’S RESULTS AND
OTHER METHODS RESULTS IN THE BIT-VEHICLE DATASET

Methods Accuracy (%) Method

Santos, Souza & Marana [22] 80.62 Boltzmann Machine

Başer & Altun [23] 81.83 Haar Cascade Classifier

Dong et al. [2] 88.11 Convolutional Network

Sun et al. [24] 90.10 KNNPC + DSRC

Bai, Liu & Yao [25] 91.08 Support Vector Machine

Ours 93.90 Convolutional Network

We conjecture that the use of a deep convolutional net-
work can optimize its parameters to learn discriminative and
reliable features for the vehicle type classification even in low-
resolution images. In addition to the depth of the network,
the heavy usage of data-augmentation and other regularization
techniques prevent the model to overfit and lead it to generalize
better, decreasing the error.

VI. CONCLUSION

In this paper we proposed a model for vehicle type clas-
sification from frontal view images by using a convolutional
neural network. The convolutional stage of the model takes
an low resolution image of the vehicle as input and outputs
adjusted features as input for the fully-connected standard
network, which outputs a probability of each class of the
vehicle.

As demonstrated by the experimental results on the BIT-
Vehicle Dataset, the parameters of the model adjusted by the
network are discrimative and generalize well even for low-
resolution images, showing the efficiency of the proposed
model. This characteristic can be useful for its usage, after
training, into an embedded intelligent traffic system with low
computation power available, such as intelligent traffic lights,
traffic signs or road radars; and thus improving the response
time and the decisions performed by the system.
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