An Expert System

for Automated Highway Driving

Axel Niehaus and Robert F. Stengel

The principal objective of this work is to
study the applicability of expert systems to the
task of guiding an automobile on a limited-ac-
cess highway. The vehicle is assumed to be
equipped with sensors detecting the surround-
ing traffic, road signs, and road geometry, as
well as contro} logic and actuators governing
the throttle, steering angle, and brakes. The
goal of the expert system is to issue commands
to the controllers, given the traffic situation,
traffic signals, road signs, and the strategy
chosen by the driver. The system presented
here consists of a rule base providing the
required driving knowledge, a backward-
chaining inference engine that performs the
reasoning, a knowledge-base compiler that
optimizes the reasoning process, and a high-
way-traffic simulator that simulates vehicles
on a highway, either controlled by a preset
strategy or by an instance of the expert system.

Introduction

Population growth is increasing the num-
ber of vehicles and passengers on the nation’s
highways, causing increased traffic conges-
tion and diminished safety margins, particu-
larly in metropolitan areas [1]-[3]. Given
current trends in suburban and urban develop-
ment, it is unlikely that these problems can be
solved entirely by building new highways.
Furthermore, it is undesirable to restrict com-
muting and commercial traffic by requiring
car pooling or by limiting access of certain
vehicle types to special roads or lanes.

Intelligent vehicle/highway systems
(IVHS) have been suggested as a solution for
safe and efficient travel on increasingly con-
gested arteries [3],[4], and have been the ob-
ject of much research abroad as well in the
U.S. [5]-[10). The term “IVHS” describes a

. wide range of devices, including traffic
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management systems that contro} the over-
all flow, vehicle systems that aid the
motorist, and cooperative systems that link
the two. One function of the second type is
“automatic chauffeuring,” which requires
sensing, actuation, and computational “in-
telligence” on board the vehicle. The intel-
ligence that must go into such a system is
the subject of this paper.

Specifically, we are interested in an
intelligent guidance system for an
automobile on a limited access highway,
capable either of driving the vehicle in
a fully automatic way or of giving the
human driver useful advice. Such a sys-
tem hopefully would enable the opera-
tion of vehicles at higher speeds while,
at the same time, reducing the
likelihood of highway accidents caused
by human errors [4],[11]. Whether or
not a fully automatic vehicle would be a
desirable option remains to be deter-
mined. Knowing how well a computer-
controlled vehicle would perform can
help answer this question.

Fig. 1 shows a block diagram of an
intelligent guidance system for headway
and lane control. Three major issues
have to be addressed in the development
of such a system: providing an interface
between the system and the real world,
building an intelligent guidance system
that is capable of planning and produc-
ing control commands, and developing
controllers that implement these com-
mands for accelerating, braking, and
steering the vehicle. A dynamic expert
system can be developed to perform
the intelligent guidance function.
With few exceptions, prior work on
expert systems has been directed at
static systems, i.e., expert systems
that work with stationary or quasi-sta-
tionary knowledge bases and that do
not have to produce goal states in “real
time” [12],{13]. (In the present con-
text, “real time” implies that problems
would be solved at the time scale of
vehicle motions.) Dynamic expert sys-
tems differ from their static counter-
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partsinthattheyareincluded in the control
loop; consequently, they have strong execu-
tion time constraints [14]-[17].

The first section of this paper introduces the
concept of intelligent automotive guidance and
defines the goal as well as the various functions
of the expertsystem implementing it. The second
section is dedicated to the development of the
different parts of an expert system that has been
implemented, and it addresses issues related to
strategy estimation of other vehicles. The third
section describes the implementation and the
testing environment, including the highway traf-
fic simulator and simulation results. The final
section summarizes the benefits associated with
the use of the described system.

The Intelligent Automotive Guidance
Concept

While driving a vehicle on a limited ac-
cess highway, a driver has to make many
guidance and control decisions. The rela-
tively mechanical task of controlling the
vehicle can be distinguished from the
guidance problem: making guidance
decisions for a vehicle requires careful
planning, analysis of the traffic situation,
and logical reasoning, all of which appear
to be “intelligent” tasks, demanding
precise control and qualitative decision
making. In this context, a rule-based ex-
pert system, called intelligent guidance
for headway and lane control (IGHLC),
has been developed to provide the neces-
sary “intelligence” and symbolic com-
putation power for the guidance task, the
actual control of the vehicle being left to
other electromechanical systems. Using
rule-based expert systems for the
guidance task has two main advantages.
The guidance task is structured and can
easily be divided into functions that can
be implemented with a limited number of
rules. This yields a system that s clear and
easy to develop, test, and maintain. Un-
like most expert systems, the developer
can use his or her own driving knowledge
as a starting point for developing rules.

The block diagram in Fig. 1 depicts the
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Fig. 1. Block diagram of intelligent guidance and control system.

integration oftheIGHLC expertsysteminthe
controlloop ofthe vehicle. The expertsystem
must analyze the information it receives from
the human driver and the various sensors and
issue commands to the controllers. The con-
trollers perform the basic control of the
vehicle, such as steering to stay in the center
of the lane, to change lane, and to command
the throttle and brake to the desired speed or
acceleration. Typical commands issued by the
expert system are Stay in lane and accelerate
to 55 MPH or Perform an immediate left lane
change while maintaining constant speed. At
each iteration, the IGHLC system has to
generate two commands to issue to the con-
trollers — one for the lateral controller (lane
control), and one for the longitudinal control-
ler (headway control).

The IGHLC expert system performs
several functions. The top-level search func-
tion is in some sense the “executive” of the
expert system, and it guides the other func-
tions to find the two parameters that command
the two controllers (Fig. 2). These controller
parameters are determined either by a normal
expert or by an emergency expert subsystem.
Many of the rules needed during “normal”
driving are not valid in an emergency situa-
tion, when the primary task is to avoid danger.
Thus, the expert system must decide whether
or not an emergency exists, using logic in the
box marked situation assessment. Given infor-
mation about the road geometry, the positions
and velocities of the IGHLC-controlled car
and other vehicles, as well as an estimate of
what to expect from the other vehicles, the
situation is analyzed and control is passed on
to either the emergency expert or the normal
driving expert (indicated in Fig. 2 by the
dotted lines between situation assessment and
the switch).

In each expert subsystem, an optimal

trajectory generator produces candidate plans
for the vehicle, using the same information as
used in situation assessment (Fig. 3). Once the
options have been identified, an evaluator
picks the one that satisfies selection criteria.
In an emergency, the only criterion used is
safety, and the emergency trajectory evaluator
selects the trajectory offering the highest
security. In the normal driving situation, safety
is not the only criterion; the normal trajectory
evaluator selects a trajectory that is safe but
that also satisfies the goal of the vehicle. This
goal may be preset by the driver, for example
setting it to Cruise at 60 MPH. The system
does not force the driver to impose a strategy;
where no goal has been entered, it chooses its
own default strategies.

Expert System Development

The IGHLC expert system is composed of
a data base, a rule base, and an inference
engine. The data base contains information
about the traffic situation. The rule base con-
tains knowledge about highway driving. The
inference engine uses the data base and the
rule base to obtain a guidance decision.

Data Base

The data base is a set of external and internal
parameters that have symbolic or numerical
values. External parameters represent the traffic
situation and the driver inputs. Traffic situation
parameters are updated at every iteration of the
control loop. Internal parameters are used by the
expert system to store information that has been
inferred by the system. Consequently, all internal
parameters are initially set to unknown.

Rule Base

The knowledge about highway driving is
given to the system in the form of rules
contained in a rule base. A rule is an “if-
then” statement containing a premise and an
action. A major distinction can be made
between the rule base of the IGHLC expert
system and the rule base of a static expert
system. In most cases, the expert system is
permitted to query the user for more infor-
mation, if needed during the reasoning
process [12],[13). Because the IGHLC sys-
tém has to determine the controller
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parametersatarelatively highrate (aboutfive
times per second), there is no time for such
questions, so the IGHLC rule base must be
complete, enabling the determination of the
controller parameters from the given data in
all cases. As aresult, all the functions of Fig.
2 and 3 have been implemented in the
IGHLC rule base. Table I shows the various
sections of the rule base, along with the num-
bers of rules, external parameters, and internal
parameters in each.

Top-Level Search. The unique rule in the
top-level search function has the task of guid-
ing the other functions to determine the value
of the two controller parameters. In Symbolics
Common Lisp [19], it is stated as:

(SETQ RB-TOP-RULE1 (MAKE-RULE
:NAME ‘RB-TOP-RULEI1
:PREMISE ‘(COND
(( OR(EQ $LONGITUDINAL-
CONTROLLER-COMMAND
‘UNKNOWN)
(EQ $LATERAL-
CONTROLLER-COMMAND
‘UNKNOWN))
‘UNKNOWN)
(TT))
:ACTION  ‘(SETQ $SEARCH
-COMPLETED T)
:DOC*The longitudinal and lateral controller
commands have been found, so the
search is completed.” ))

The first line sets the value of the parameter
RB-TOP-RULET] to the rule structure created
by the MAKE-RULE instruction. The follow-
ing eight lines specify the name of the rule, the
premise of the rule, its action, and a documen-

April 1991

tation string to be printed when the rule fires,
which is used to analyze the reasoning process
of the inference engine. The premise of this
rule tests the two internal parameters $LON-
GITUDINAL-CONTROLLER-COMMAND
and $LATERAL-CONTROLLER-COM-
MAND. (A dollar sign as the first character of
a parameter name indicates an internal
parameter. As explained later, this is used
during compilation). If one of these two
parameters has a value of unknown, the
premise evaluates to unknown; as soon as both
are known, its value becomes true. When this
happens, the action of the rule sets internal

parameter $SSEARCH-COMPLETED to true.
At each iteration in the control loop, the in-
ference engine is called to determine the value
of $SEARCH-COMPLETED. Because this
top-level search rule is the only rule affecting
this parameter, the inference engine deduces
that it must find the value of its premise. This
guides the search towards the two controller
parameters.

Situation Assessment. This group of rules
determines whether or not the traffic situation
is an emergency. Since “emergency” has a
rather wide meaning, it must be given a precise
definition. The situation assessment rules
define a traffic situation to be an emergency
when a deceleration of more than some
threshold percentage of the maximum current
obtainable deceleration is needed to avoid a
collision. As a result, this section contains
rules that compute mean decelerations and
that set the internal parameter SEMERGEN-
CY accordingly. Nevertheless, what looks as
simple as just deciding whether or not a situa-
tion is an emergency can be quite complex.
For example, if another vehicle is ahead, what
is the system supposed to “think” that vehicle
will do in the future? Will it accelerate? Will
it slam on its brakes? It is clear that whatever
is assumed on the part of the system will
largely affect its response, and this section
uses other lower-level sections to make as-
sumptions on the actions of other vehicles.

Emergency Expert. In an emergency, the
IGHLC system tries to maximize safety.
Given a vehicle A and the vehicle A+1 ahead

Table I e |, 8
Number of Rules, Internal, and External 5 % = 3
Parameters in Various Sections of Rule _“E 5 1% g S 5
Base g é‘ 5 8 8 8
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Function Z 3 8
Top-Level Search 1 0 3
Situation Assessment 13 5
Emergency Expert 31 14 74
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Projected Action Determination 14 3 1
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of it, the security ratio SR, of vehicle A is

defined as

SR, = distance ( vehicle A, vehicleA + 1)
Security Distance ( vehicle A )

Security distances are consistent with the
guidance provided by a typical drivers’
manual, based on vehicle speed and road con-
dition [20]. The minimum security ratio is the
minimum, over the intended trajectory, of the
security ratios of the IGHLC car and the
vehicle behind it. The rules implementing the

emergency trajectory evaluator choose the op-
tion with the highest minimum security ratio.
Since the vehicles ahead and behind the
IGHLC car are not, in general, the same over
the whole intended trajectory, this ratio
depends on the vehicles in adjacent lanes. In
taking the minimum over the intended trajec-
tory, the system not only takes into account
which position on the road is currently
desirable but the implications of that decision
in the future. A decision that looks promising
but actually leads to a critical situation after a

certain time is discarded. To avoid oscillations

in the decision, the system accounts for the

projected action, i.e., the decision of the’
preceding iteration of the guidance loop,

adapted to the present situation. For example

in an emergency, the system always tries to

follow the projected action, unless there exists

another option with a significantly better min-

imum security ratio. This insures persistency

in the output of the system.

Normal Driving Expert. When not in an
emergency, the goal of the expert system is to
satisfy the driver, who specifies cruising speed
and two external parameters: SECURITY-
FACTOR and AGGRESSIVENESS-FAC-
TOR. All other guidance decisions, such as
choice of lane, are made by the expert system.
Given a goal to achieve, drivers may define
optimum response differently. Some prefer to
be very cautious while others like to maintain
a minimum security level. Some are comfort-
able with high levels of acceleration and
deceleration, and others barely touch the ac-
celerator or brake. The purpose of the security
and aggressiveness parameters is to enable the
driver to choose a comfortable driving style.

When the driver omits certain inputs, like
telling the computer what maximum speed he
or she authorizes for passing maneuvers (this
speed is usually taken higher than the speed
limit), the computer must be able to choose
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Fig. 5. Simplified logic for normal driving.
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default strategies. This task is performed by
the default strategies function, the defaults
being chosen in terms of the aggressiveness
and security factors given by the driver. Main-
taining a given speed on a highway is not
always possible, and in order to come close to
it, the computer will have to perform lane
changes and passing maneuvers. However,
unlike the emergency expert, the normal driv-
ing expert does not have the right to command
illegal actions. Given most state laws, for ex-
ample, a car must drive in the rightmost lane
unless a passing maneuver is desired. Passing
on the right is prohibited, even in the case of
a slow vehicle ahead in the left lane with no
vehicle in the right lane. A left lane change has
to be performed to try to make that vehicle
change lane to the right, in order to pass it.
Logical relationships within the expert
system can be represented graphically (Fig. 4).
Each rectangle contains a parameter, along
with the list of values the parameter can ac-
quire. A rule is represented by arrows, lines,
and a rounded box, the latter containing the
name of the rule. The arrow leaving a given
box points to the value of the parameter set by
the action of the corresponding rule. The
premise of a rule is represented by lines be-
tween the parameters it tests and the box of the
rule. Multiple conditions represented by mul-
tiple lines are treated as a disjunction (OR),
unless there is an arc joining them, in which
case they are treated as a conjunction (AND).
Consider a normal driving example (Fig.

5). First, the system determines if there is a
slow vehicle ahead, in the same lane as the
IGHLC car. If yes, and if the vehicle does not
show any signs of a right lane change, leftlane
changes are examined. If the system deter-
mines that a left lane change is or will be
available, it guides the vehicle accordingly.
Where no left lane change is available in the
near future, the system computes an approach
trajectory to the vehicle ahead and waits.
When there is no vehicle ahead, or if the
vehicle ahead is changing lane to the right,
right lane changes are examined. Unlike left
lane changes, a right lane change will be made
only if there is one available and the cor-
responding position in the right lane will not
immediately lead to a lane change back to the
current lane, i.e., itis “interesting.” If there are
slow vehicles in the right lane, the normal
driving expert will issue commands to stay in
the passing lane.

Optimal Trajectory Generator. Both the
emergency and the normal driving experts use
an optimal trajectory generator to compute
candidate trajectories. The current rule base
uses position, velocity, and state of brake
Tights and turn signals of other cars as inputs.
One important aspect of the expert system is
to produce an accurate estimate of what other
vehicles will do in the future (Fig. 2). The
easiest estimate is to assume that all vehicles
move at constant speeds and do not change
lanes. For small time scales, this works
reasonably well, and it has the advantage of
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being very fast; however, when the prediction
time interval is pushed further ahead, uncer-
tainty about other cars’ actions increases. An
intelligent system would analyze how the
other vehicles are driven, deduce the strategy
underlying those actions, and thus deduce the
most probable future actions of these vehicles.
Such a system may be too complex to be
considered for real-time application, so some
compromise between accuracy and execution
time must be found. The current system is
limited to rules that predict-the longitudinal
motions of the other vehicles. One of the goals
of the testing environment described in the
next section is to find out just how good the
estimates of the other vehicles’ actions must
be.

Inference Engine

Given the knowledge about highway driv-
ing contained in the rule base, the goal of the
expert system is to infer the two controller
commands (internal parameters since they are
generated by the system), using information
about the traffic situation and driver inputs.
The inference engine is a program that applies
rules from the rule base to the knowledge in
the data base to infer new knowledge. Given
the name of an internal parameter, the in-
ference engine searches the rule base for a list
of rules. These rules are selected so that when
applied in sequence, they infer new
knowledge until the last rule provides a value
for the desired parameter. There is not one
single rule that immediately yields the two
controller commands; the system has to use
many rules to determine other parameters first.
A typical example of this is the internal
parameter SEMERGENCY. Initially, the sys-
tem does not know whether or not the traffic
situation is an emergency, and the value of
$EMERGENCY is unknown, forcing the in-
ference engine to first determine its value by
using other rules.

The search method implemented by the
inference engine is called backward-chaining,
which examines only those rules that effec-
tively have a chance of giving a result. For-
ward-chaining repetitively tests all the rules,
in some arbitrary order, until either no more
rules fire (no more information can be in-
ferred) or the value of the desired parameter
has been found. Backward-chaining starts
with the desired parameter, and searches back-
wards to determine if part of the initial
knowledge will produce a value [18]. The fact
that the IGHLC rule base is well structured in
groups of rules implementing the various
functions of Fig. 2 and 3 insures that only a
minimal number of rules will be examined.
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Backward-chaining can be explained
using a simple example: determining if a left
lane change is wanted in the sample
knowledge base shown in Fig. 6. The in-
ference engine is initially called to determine
the value of internal parameter $WANT-
LEFT-LANE-CHANGE. First, it checks to
see if this parameter already has a value. If it
does, the inference engine returns the cor-
responding result. In the more probable case
where the parameter is unknown, the in-
ference engine searches the rule base for rules
setting $SWANT-LEFT-LANE-CHANGE,
finding Rule 1 and Rule 2. Rule 1 is then
tested, checking for an obstacle ahead.

Let’s assume a traffic situation where there
is a slow car ahead that is not changing lane to
the right. SOBSTACLE-AHEAD is an inter-
nal parameter, and its value is initially un-
known. Rule 1 is unable to provide an
immediate value for SWANT-LEFT-LANE-
CHANGE, so Rule 2 is tested. Since the value
of OBSTACLE-CHANGING-LANE-TO-
RIGHT is false (by assumption), Rule 2 also
needs the value of parameter $§OBSTACLE-
AHEAD to find the truth value of its premise.
Since these are the only rules capable of
providing a value for SWANT-LEFT-
LANE-CHANGE, the inference engine
concludes that it must find a value for
parameter $§OBSTACLE-AHEAD. It calls
itself recursively to find the new desired
parameter. Upon entry, the inference engine
starts a search for the rules setting $OB-
STACLE-AHEAD, thus finding Rules 3 and
4. Rule 3 is tested first; the inference engine
finds that its premise equals true (the values
of external parameters VEHICLE-AHEAD
and VEHICLE-AHEAD-TOO-SLOW are
true by assumption). The inference engine
executes its action part, setting $OB-
STACLE-AHEAD to rrue. Having found a
value for parameter SOBSTACLE-
AHEAD, the inference engine is exited, and
returns to the first call. The value of the
premise of Rule 1 now being true, Rule 1
fires, setting $SWANT-LEFT-LANE-
CHANGE to true, and finally, the inference
engine is exited with the desired value, true.
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Implementation of the IGHLC
Expert System

The IGHLC system originally was imple-
mented on a Symbolics 3670 LISP Machine,
using the Common LISP language for the
inference engine and the logic part of the rule
base, and FORTRAN for the numerical proce-
dures implementing the optimal trajectory
generator. The system has been transferred to
a NeXT computer, using Common LISP and
Objective C for implementation.

The current rule base consists of 172 rules,
86 external parameters, and 168 internal
parameters. Given this size, and in general the
complexity of the whole project, the need for
aconvenient and efficient testing and develop-
ment environment is easily seen. The current
development environment is shown in Fig. 7.
The developer starts by writing rules to a
source rule base, which is translated into an
executable rule base by a knowledge base
compiler. The executable rule base can be
tested for single traffic situations, or, using a
highway traffic simulator, it can be tested in a
traffic situation that evolves in time. Given the
results of testing, the developer can go back to
the source rule base to change rules producing
undesirable actions or add rules to improve it.

Knowledge Base Compiler

The knowledge base compiler has two
functions. First, it parses the source rule base
to produce a list of all internal and external
parameters (it is during this parsing that the
dollar sign is used to distinguish internal
parameters from external ones), and it creates
functions that initialize the rule base and data
base. Second, it performs an optimization of
the search process.

As seen in an earlier section, the inference
engine must perform various searches to
deduce the value of a parameter. These sear-
ches can be divided into four categories. First,
given some internal parameter, the list of rules
affecting that paraméter must be determined.
This list is used when deciding which rules to
examine in order to obtain a value for the

parameter. Second, given some internal
parameter, the inference engine must search
for all the rules that use the parameter in their
premises. This determines which rules are af-
fected when a value has been found for the
parameter. Third, the inference engine needs
to know which internal parameters figure in
the premise of a given rule. This list of internal
parameters is used when the premise of the
rule evaluates to unknown, and the inference
engine has to determine which parameters
help to find a value for the premise. The last
type of search is the determination of all the
internal parameters set by the action of a given
rule. This search is used when the rule fires,
and the inference engine has to determine
which rules might be affected by the new
knowledge. It is clear that all four of these
searches can be performed ahead of time, the
results being stored away, together with the
parameters and rules. The compiler performs
this task, which would be tedious for the
developer.

Using the compiled IGHLC rule base, cur-
rent execution times are 1 to 4 seconds,
depending on the traffic situation. These num-
bers are obtained while running in the LISP
environment, which is good for rule base
development but is too slow for real-time
simulation (because of “garbage collection,”
among .other things). The system could be
translated into a more efficient language such
as C or Pascal for true real-time operation, as
demonstrated by the Princeton Rule-Based
Cotrol System [21].

Highway Traffic Simulator

The system was first developed and tested
using single traffic situations, where the
developer gives the inference engine a data
base containing the situation and compares the
output of the reasoning process to the expected
result. Currently under development is a traf-
fic simulator that gives the developer a graphi-
cal view of the evolving situation when the
expert system is driving a vehicle, and reveals
the long term implications of a given decision.

The simulator uses five windows to obtain
and display information. The Simulator Win-
dow is the graphical output, representing the
road and the vehicles. This view is always
centered vertically on the IGHLC car, the road
background being scrolled down as the
IGHLC car advances. The length of the por-
tion of the road displayed varies between 144
ft and 864 ft, depending on the scale factor
chosen by the tester. The control window
enables the developer to click buttons to ob-
tain more information, change the traffic situa-
tion, add or take out vehicles, choose
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Fig. 8. (a) Initial traffic situation for simulation.

during simulation.
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(b) Emergency lane change performed by the IGHLC car

strategies for vehicles, and load or
save traffic situations or simulation
results. Keyboard inputs are reflected
in the Interaction Window. The other
two windows display the rules that are
being fired by the expert system and
the parameters in the data base.

Using this simulator, the developer
can follow the evolution of an initial
traffic situation, while observing the
rules and parameters that are respon-
sible for it. One important feature of
the simulator is that the developer can
choose the strategies the various
vehicles follow. In this way, a given
vehicle can be controlled by an cxpert
system, or it can simply have a-
predefined strategy. Examples of the
use of this feature include the case
where all the vehicles are controlled
by similar expert systems (to analyze
the effect of a given set of rules on
traffic congestion and throughput), as
well as the analysis of the expert sys-
tem when confronted with “abnor-
mal” cases.

IGHLC System Test

Fig. 8(a) shows an example traffic
situation used to test the simulator.
The IGHLC car is in dark gray, and it
is surrounded by four other vehicles.
Vehicles 1 and 2, ahead of the IGHLC
car at 240 ft and 350 ft, are both trucks
traveling at 40 ft/s. Ahead of the
IGHLC car at 240 ft, Vehicle 3 is
traveling at 80 ft/s. Finally, behind at
170 ft, Vehicle 4 is traveling at 85 ft/s.
Except the IGHLC car, which is con-
trolled by the IGHLC expert system,
all vehicles stay in lane and travel at
constant speeds. The IGHLC car is
currently travelling at 80 ft/s, but it has
a desired speed (set by the human
operator) of 100 ft/s.

Initially, IGHLC ordered the car to
be in the middle lane to pass the two
trucks. Since Vehicle 3 was slower
than the desired speed, the expert sys-
tem determined that the IGHLC car
should make a left lane change to the
leftmost lane to pass it as well. How-
ever, since Vehicle 4 was coming up,
a left lane change was judged unsafe,
and the final decision was to stay in
lane, following Vehicle 3 until Vehicle
4 had passed.

In order to test the Emergency Ex-
pert as well as the Normal Expert, the
simulator forced Vehicle 2 (the front
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Fig. 9. Plot of normal and emergency expert activity during simulation of Fig. 8(a).

black truck) to change lane to the middle lane,
as soon as the IGHLC car was next to Vehicle
1, creating an emergency given the closeness
of Vehicle 2 (80 ft, taking into account the
lengths of the vehicles) and the difference in
speeds (40 ft/s). This effectively triggered the
Emergency Expert, which determined that the
safest option was to change lane to the left to
avoid Vehicle 2, although Vehicle 4 was com-
ing up behind. This lane change maneuver is
shown in Fig. 8(b).

After passing Vehicle 2, the IGHLC car
stayed in the left lane (since it already was
there and Vehicle 4 had slowed down) to pass
Vehicle 3. Finally after passing Vehicle 3, it
returned to the rightmost lane, since no more
obstacles were detected ahead.

To further analyze the expert system, a plot
was produced showing the number of rules in
the normal expert and emergency expert tested
at every iteration (Fig. 9). When Vehicle 2
produces the emergency at ¢ = 6 s, a peak
shows up on the curve of the emergency expert
activity (which goes from 7 rules tested per
loop to 24) and the normal expert activity
drops from 11 rules/loop to 1 rule/loop. After
successfully changing lane to the left, the
situation is reversed at ¢ = 8 s, when the emer-
gency is ended. The drop in the Normal
Expert’s activity atz = 60 s corresponds to the
IGHLC car passing Vehicle 3. The increase at
t=92 s indicates that security distance in front
of Vehicle 3 has been reached and the in-
itialization of the right lane changes. Finally
the drop at 101 s signals that the IGHLC car
has reached the rightmost lane.

Conclusions

An expert system for intelligent guidance
of a vehicle on a highway has been developed
and tested using a highway simulator. There
are two principal conclusions to be drawn.
First, the expert system approach, combined
with a structured rule base that implements the
driver’s many tasks appears to have many
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advantages, including ease of programming,
testing, debugging, and breakdown of the
driving problem in a consistent and natural
manner. Second, the simulation results sug-
gest that an expert system is capable of im-
plementing the driving task. Although the
system performs many driving functions,
more details of highway driving must be in-
cluded. Future research will extend the rule
base to handle new situations.
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1990 ACC Tutorial Workshops

Joe Chow, of Rensselaer Polytechnic In-
stitute, Workshop Chairman for the 1991
American Control Conference to be held in
Boston, MA, June 26-28, 1991, has an-
nounced workshop plans for the two days
before the Conference. Six one-day work-
shops have been scheduled.

Recursive Algorithms for Tracking in
Clutter

Yaakov Bar-Shalom, University of
Connecticut, Monday, June 24, 1991. This
workshop reviews some recent developments
in real-time implementable recursive algo-
rithms for maneuvering target tracking in clut-
ter. The empbhasis is on algorithms with fixed
computational and memory requirements,
rather than the much more complex approach
of examining each possible sequence of meas-
urements and dynamic behaviors. The
workshop material - a 800 page set of notes
“Multitarget-Multisensor Tracking: Prin-
ciples and Techniques,” and a PC demo dis-
kette are available to the participants.

Theory and Applications of Intelligent
Control Systems

Kimon Valavanis, University of S. W.
Louisiana; Levent Acar, University of Missouri;
K. M. Passino, Ohio State University, Monday,
June 24, 1991. This workshop covers several
different Intelligent Control Methods and ap-
proaches. Emphasis is given to the design of
structure-based hierarchies and knowledge-rich
distributed controllers, the analysis of planning
systems in autonomous control, and modeling
and analysis of general hierarchical systems with
diagnostic intelligence capabilities. Applications
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to flexible manufacturing systems, robotic as-
semblies and robotic systems with diagnostic
capabilities will be discussed.

Fault Tolerant Computer Control
Systems

N. Viswanadham, Indian Institute of Science;
K. Dean Minto, General Electric Company; K.
Trivedi, Duke University Monday, June 24,
1991. This workshop will provide an integrated
overview of the various aspects involved in
designing fault tolerant computer control sys-
tems. Particular attention will be devoted to
fault detection, isolation and reconfiguration
(FDIR), fault masking, and fault coverage.
Practical details of the application of EDIR
and fault masking techniques will be
presented. Recent results on robustness in
FDIR schemes and multirate sampling will
also be covered.

Discrete Event Systems: The State-
of-the-Art, Theory and Applica-
tions

Xi-ren Cao, Digital Equipment Corpora-
tion; Christos G. Cassandras University
of Massachusetts; Y. C. Ho, Harvard
University, Tuesday, June 25, 1991. This
tutorial workshop emphasizes the fun-
damental concepts, techniques, and practi-
cal methodologies in the modeling, analysis
and control of discrete-event systems. The
fundamental resource contention problems,
simulation methods, software packages, and
the advantages/disadvantages of simulation
compared with analytical techniques will be
discussed. Applications involving real-time
control and optimization of computer net-

works and distributed processing systems will
be presented

Neural Networks in Control Systems

K. S. Narendra, K. Perthasarathy, Yale
University; P. Werbos, National Science Founda-
tion; 1. Unger, University of Pennsylvania, Tues-
day, June 25, 1991. The workshop provides a
guided tour through the rapidly expanding and
often intricate field of neural networks. The ap-
plication of well-established techniques in the
areas of identification and control to the analysis
and synthesis of dynamical systems containing
artificial neural networks as subsystems will be
discussed. The theoretical perspectives will be
supplemented by applications in process control,
flight control and robotics. The workshop will
follow a forthcoming monograph “Neural Net-
works in Dynamical Systems” by K. S.
Narendra.

Digital Implementation of Controllers

Herbert Hanselmann, dSpace Gmbh, Germa-
ny. Tuesday, June 25, 1991. This workshop shows
what can be done in controller implementation
using today’s VLSI processor hardware and
software technology. The implementation of
high-order multivariable state-variable control-
lers for fast systems on standard microprocessors,
signal processors and microcontrollers will be
discussed. Case studies including mechatronics ap-
plications illustrate problems and solutions.

For further information, contact Professor Joe
Chow, Electrical, Computer and Systems En-
gineering Department, Rensselaer Polytechnic In-
stitute, Troy, New York 12180, telephone
(518)276-6374 (email: chowj@ecse.rpi.edu).
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