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ABSTRACT

We are currently developing a vision-based sign language
recognition system for mobile use. This requires
operability in different environments with a large range of
possible users, ideally under arbitrary conditions. In this
paper, the problem of finding relevant information in
single-view image sequences is tackled. We discuss some
issues in low level image cues and present an approach
for the fast detection of a signing persons hands. This is
achieved by using a modified generic skin color model
combined with pixel level motion information, which is
obtained from motion history images. The approach is
demonstrated with a watershed segmentation algorithm.

KEY WORDS

Image Processing, Low-level Image cues, Segmentation,
Sign Language Recognition

1. Introduction

So far deaf people have almost completely been excluded
from technical innovations that have been important for
social life. Examples are media (radio, tv) and mobile
communication. Now, an EC founded project called
"WISDOM" has the goal to create a mobile
communication device for deaf people, which shall allow
them to benefit from European 3rd generation
telecommunication networks. Our task within the project
is to develop a vision-based sign language recognition
system for this device, in order to provide access to future
services like sign language translation. The required
properties of this recognition system are:

• single view image acquisition

• operability despite unknown user / environment

• near real-time performance

Considering the manual parameters (posture, pose,
position and motion of the hands) as input, the pattern
matching problem has already been solved with data-
gloves [1, 2] and imaging devices in known environments
[3, 4, 5]. Imaging devices are more reasonable for
practical applications, since they are less cumbersome and
allow also to capture facial expression. Finding and
extracting information about human hands and face from
image sequences is also interesting for a whole range of

other applications [6, 7], hence there is a lot of research
on this area. The problem of operation in environments
other than a laboratory is an active research topic. We
want to address it with regard to the detection of hands for
vision based sign language recognition.

We start with an introduction to existing approaches
that are relevant in the context of our application and
explain our concept of a processing scheme using
multiple low level image cues. Then details are given
about our color model, which is an adaptation of a generic
skin-color model, afterwards the motion extraction
method is explained. We present some results with a
segmentation algorithm based on watersheds, although
this is only a preliminary example. At last, some unsolved
problems are discussed, which point out to remaining
future work.

2. Image Processing for Sign Language
Recognition

An early vision based system for the recognition of sign
language is presented in [3]. Starner and Pentland use a
single video camera and uniformly colored gloves to aid
the segmentation and the feature extraction processes.
Later they also show, that a user-calibrated skin color
model delivers similar results in a known environment.

Hienz et. al [5] use color coded gloves which allow to
obtain detailed information about each finger of the
dominant hand. The environment is restricted to an empty
white background. In arbitrary environments however,
neither skin color nor any other color can be guaranteed to
appear only within the object of interest, which is the
hand. Thus, relying on color information only is not
sufficient, not even with the aid of colored gloves.

The usual extension for higher reliability is the
combination of multiple image cues. The term "image
cues" denotes information, that can be extracted without
higher semantic information about the actual image
content. Motion is considered as a good supplement for
color, since gestures are dynamic acts.

Therefore Imagawa et al. [8] use a subsequent
integration scheme, first using color and then motion
information. They apply histogram backprojection to an
image and segment it into connected regions. These
regions are tracked by a Kalman filter to find unique
correspondences for hands and face. The effect of large
skin colored spots in the background is not considered,
but it might be a problem, since the segmentation is



sequential and thus strongly influenced by the color
information.

Yang and Ahuja [9] do it in reverse order, they use
motion and then color. First, several steps are performed
for motion segmentation, then the extracted regions are
scored for skin color likeliness and finally adjacent
regions are merged until the shape is elliptic or
rectangular. These regions are assumed to be the hands
and the face. However, the authors only present results for
a person standing in front of a uniform background.
Besides, the computational cost of this approach is
relatively high.

Both approaches integrate image cues sequentially
into image analysis. Our idea is to combine image cues
simultaneously into a single probability map, in order to
indicate relevant content for subsequent processing steps.
Extension for additional cues is straight forward this way
and thus very flexible. The basic idea behind this has been
used in visual attention approaches for indicating salient
image content (e.g. [10]).

Clearly, the most information is always contained in
the original image. Any crucial processing like
segmentation or tracking should therefore be done on the
original image, and the map should be considered as an
additional aid. The following image is a graphical
representation of this concept, with the target of image
segmentation.

3. Generation of Probability Map

This chapter gives details about the generation of the
probability map from color and motion cues.

3.1 Color Cues

In different works it is stated, that human skin color is
similar in hue across all races but differs in intensity. For
this reason skin color is often modeled as probability
distribution in the chromaticity plane, while intensity
information is omitted. This works quite good if user and
environment are known [11, 12], but in natural scenes hue
and saturation can be influenced by color and intensity of
unknown light sources. Also, omitting intensity reduces
the three dimensional color space to two dimensions and

thus loses important information.
Jones and Rehg [13] propose a generic skin color

model to overcome this problem. They create histograms
in RGB-space for skin and non-skin color distribution on
the basis of more than 18.000 images (nearly 2 billion
pixels). These were collected from a web-search and
include a large variety of illumination conditions. Half of
the pictures contain skin and have been segmented by
hand to obtain the skin regions, the other half contains no
skin. The histograms are used to calculate skin color
probability for a single RGB-colored pixel with Bayes'
theorem (see equation 1), which transforms an image into
a probability map.
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Where p(s)  and p(¬ s) is the a priori probability for
observing a skin or non-skin pixel, that was calculated for
the given training set, and with p(s) + p(¬ s) = 1.
p(rgb|...) denotes the value of the respective histogram
bin at the coordinates r,g,b.

Jones and Rehg use simple thresholding to classify a
color into skin or non-skin class and obtain a best result of
90 % correct versus 14 % false detections. Other work
[14, 15] has proven that using color spaces other than rgb
doesn't improve the performance, since discriminability is
determined by the differences of skin and non-skin entries
in color space, which get transformed into other color
spaces, too.

For our purpose it is not appropriate to calculate the a
priori probabilities as described by Jones, because our
application is biased towards sign language recognition.
Since we don't have substantial comparable training
material, we apply a region adaptive method for
computing them from the given image.

Starting with initial values of p(s) = p(¬ s) = 0.5, we
set up the probability map like Jones proposed it. In the
next step the value at the image coordinate (x,y) is
regarded as the position-dependent a priori probability
p(s|x,y). The new value, that a pixel of a given color is
skin, is computed as the mean value of an 8-
neighborhood.
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This scheme can be used repeatedly, but a visual
improvement is already noticeable after one iteration. The
result with an example frame from the mpeg test sequence
"silent" can be seen in figure 2. The original image is not
included in the color model, nevertheless interesting
regions get high probabilities. Unfortunately there are
irrelevant areas in the background, that get high skin color
probabilities, too. Color alone is obviously not sufficient
here.

motion cues

color cues

image segmentation

probability
map

Figure 1. Image processing scheme. Simultaneous and
supporting integration of image cues is proposed for
segmentation instead of sequential processing.



(a) Original (b) Non-adaptive method (c) Adaptive method

Figure 2. Result of skin color model applied to one frame of the
mpeg test sequence "silent". Skin probability maps are shown
for p(s) = p(¬ s) = 0.5 in (b) and for the region adaptive method
for estimating a priori probabilities in (c). Note that contrast is
enhanced and pixel noise is reduced.

3.2 Motion Cues

A whole research area is concerned with pixel level
motion detection, known as optical flow computation. It
summarizes all methods for estimating the direction and
magnitude that each single pixel of an image moved
between successive frames. The method of
Horn & Schunk is one of the first algorithms for optical
flow estimation and still amongst the best performing.
Yet, the method of Lukas & Kanade is reported to be the
best with regard to processing speed and accuracy [16].
But optical flow techniques generally rely on intensity
information, i.e. they can not detect motion at borders
with different color, if intensity is equal. Besides, they are
associated with high computational load.

If only the motion magnitude is searched for, the
much simpler motion history images (MHI) can be
regarded as an approximation [17]. MHIs are in principle
images, where the decaying difference of subsequent
frames is overlaid over each other.
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H(x,y,t) is the motion history image at time index t 
and τ is the decaying time constant. A value of 1 in
D(x,y,t) indicates that the difference in either channel of
red, green or blue between successive images is larger
than a defined threshold and thereby takes color changes
into consideration. The choice of threshold corresponds to
a minimum motion level, that must be observable. We
define the threshold as a fixed proportion of the mean
difference between two images.

 MHIs can be computed very fast. Unfortunately they
tend to amplify the motion at the boundaries of an object
and produce sharp steps. This can be reduced by
convolving it with a gaussian kernel and results like
depicted in figure 3 can be obtained, where the intensity
level can be regarded as probability for motion.

Figure 3. Top row shows four subsequent frames of the
sequence. Bottom row is the motion history image after gaussian
filtering.

3.3 Combination of Cues

Under the assumption that color and motion cues produce
stochastically independent probability maps, the correct
method for computing one combined map is pixel wise
multiplication. The resulting probability map can be seen
in figure 4 for some example frames. It should again be
pointed out, that these results were obtained without
knowledge about image content and without any kind of
calibration. Yet, the visual impression for these example
frames is good. The processing speed on a 500 Mhz
personal computer with QCIF resolution is about 25 fps,
including the filtering part of the MHIs. QCIF is a
common resolution for video conferencing applications.

However, the probability map represents vague
information, so it shouldn't be expected, that the map can
provide good segmentation results directly, for example
by thresholding. First of all, borders are unlikely to match
the edges of the actual object. And second, the map
should preferably be generated from downsampled
images to be less noisy, which means that the resolution
might not be detailed enough for accurate segmentation.
Thus the next section is an example for segmentation
according to the scheme in figure 1.

      

      

Figure 4. Result of combining color and motion into one
probability map. Intensity corresponds to probability.



4. Using Image Cues for Segmentation

Figure 5 shows our laboratory and the probability maps
for color, motion and the combination of both. The color
map yields high probabilities for the left persons head,
and the clothing on the left chair, as well as the signers
clothing. The motion map captures flickering on both
computer monitors. When combined, all these distortions
are eliminated, leaving a representation of the waving
hand and a little piece of the arm. Again, processing is
done without any additional knowledge about the
environment and without special illumination.

We now address the problem of region segmentation
in this case as an example for how to apply the probability
map. Here the fast watershed algorithm as described in
[18] is used. It still is time consuming, i.e. about 2.5
seconds on a size of 768 ×  576 with the previously
described hardware. Furthermore, watersheds tend to
deliver heavily oversegmented results, which increases
even more with additional noise. Prior noise filtering can
reduce oversegmentation in return to undesired loss of
border precision. Applying the image cues can help in two
ways. First, speedup can be achieved by restricting
watershed search to relevant sub-regions, and second,
oversegmented regions can be grouped to yield large
connected regions with high border precision. It is
sufficient to use the lower QCIF resolution for probability
maps, in order to lessen computational load.

The areas of interest can be extracted from the map
by thresholding, searching for connected regions and
using a  slightly enlarged bounding box. For the given
example there is only one, which represents an area of
approximately 160 × 280 pixel in the original image.
Watersheds can be computed on this area in only 250
msec. Let p(x,y) be the probability map, Θ a predefined
threshold, w(x,y) the watershed region mask and s(x,y) the
segmentation result. Then the following grouping
algorithm can be used to perform the segmentation.

1. Initialize s(x,y) with 0
2. Scan p until p(x,y) ≥ Θ
3. For corresponding region A in w

3.1 compute mean probability
3.2 count number of pixel N with

p(x,y) ≥ Θ

4. If mean ≥ Θ and N ≥ 50 %, then
label A in s

5. Delete A from p
6. Repeat with 2. until p is scanned

completely

The result can be seen in figure 6. The hand
segmentation is very accurate at borders, but also captures
a fraction of the arm, due to the skin color similarity of
the users sweater (see figure 5.).

  

Figure 6. Left: Watersheds overlaid over original. Middle:
Probability map. Right: Segmentation result.

The drawback of this procedure is, that the absence
of motion (e.g. the user takes a short rest) leads to a total
loss of information in the probability map. Tracking is
required to stay focused on the corresponding region. the
described method is also not capable of separating two
hands when they overlap each other. Borders between
hands might still be accurate in the watershed image, but
more sophisticated methods must be used to assign
adjacent regions to either hand. Likewise, moving the
hand in front of the face is a problem, since the face can
move, too. An active shape tracker [19] might be a
solution. Another problem are skin colored items in the
background, like a wooden cupboard. A runtime adaption
of the skin color model is required, in order to restrict the
very general skin color model to fit the current user. The
user's face could be suitable for automatic extraction of
skin color, since faces have salient texture and rigid shape
and therefore can be detected more reliably [7]. All these
drawbacks show, that some tracking/prediction and a
user/hand model are necessary, in order to cope with

   
Figure 5. The leftmost image is a frame of a waving sequence, taken in our laboratory. The other images are from left to right: skin color
map, motion map, combined map with bounding box of relevant region.



overlapping and occlusion. Nevertheless, the proposed
method of image cue utilization can be a help in any case.

5. Summary and Outlook

This work presents an approach for the fast detection of
gesturing hands from image sequences. It is based on the
combination of the low level image cues of color and
motion. The color map is a generic skin color model,
which is extended for region adaptive estimation of a
priori probabilities. Motion probabilities are obtained
from motion history images, also known as temporal
templates. Combination of both yields a powerful method
for detecting interesting image content for vision-based
sign language recognition. The required processing power
of tasks like region segmentation can be reduced
significantly this way.

The current work is merely a first step towards
environment and user independent sign language
recognition. Extraction of additional image cues is one
future topic. Texture and edges are interesting, because
hands don't have salient texture and are limited by
borders. Future work will also deal with adapting the
color model to the user at runtime. Also, tracking and
prediction techniques will be applied, in order to deal with
occlusion and overlapping. Then, appearance and model
based feature extraction will be used, leading to hand and
user mo deling.
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