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Abstract 
 
Automatic recognition of human facial expressions is 
a challenging problem with many applications in 
human-computer interaction. Most of the existing 
facial expression analyzers succeed only in 
recognizing a few emotional facial expressions, such 
as anger or happiness. Instead of being another 
approach to automatic detection of prototypic facial 
expressions of emotion, this work attempts to measure 
a large range of facial behavior by recognizing facial 
action units (AUs, i.e. atomic facial signals) that 
produce expressions. The proposed system performs 
AU recognition using temporal templates as input 
data. Temporal templates are 2D images, constructed 
from image sequences, which show where and when 
motion in the image sequence has occurred. A two-
stage learning machine, combining a k-Nearest-
Neighbor (kNN) algorithm and a rule-based system, 
performs the recognition of 15 AUs occurring alone 
or in combination in an input face image sequence. 
Each rule utilized for recognition of a given AU (or a 
given AU combination) is based on the presence of a 
specific temporal template in a particular facial 
region, in which the presence of facial muscle activity 
characterizes the AU (or AU combination) in 
question. When trained and tested on the Cohn-
Kanade face image database, the proposed method 
achieved an average recognition rate of 76.2%. 

 
1    INTRODUCTION 

 
Humans interact with each other far more naturally 
than they do with machines. This is why face-to-face 
interaction cannot be still substituted by human-
computer interaction in spite of the theoretical 
feasibility of such a substitution in numerous 

professional areas including education and certain 
medical branches. In fact, existing man-machine 
interfaces are perceived by a broad user audience as 
the bottleneck in the effective utilization of the 
available information flow [1]. Hence, to improve 
man-machine interaction one should emulate the way 
in which humans communicate with each other. 

Although speech alone is often sufficient for 
communicating with another person (e.g., in a phone 
call), considerable research in social psychology has 
shown that non-verbal communicative cues are 
essential to synchronize the dialogue, to signal 
comprehension or disagreement and to let the dialogue 
run smoother and with less interruptions [2]. The 
terms ‘ face-to-face’  and ‘ interface’  indicate that the 
human face has a significant role in interpersonal 
interactions. The face is the means to identify other 
members of the species, to clarify and stress what is 
said, to signal comprehension, disagreement and 
intentions [3]. Logically, automatic analysis of faces 
and facial expressions has numerous applications in 
human-computer interaction and has attracted, 
therefore, the interest of many AI researchers. 

The majority of the existing approaches to 
automatic facial expression analysis focus at the 
recognition of few prototypic emotional facial 
expressions (e.g. sadness, anger or happiness) 
produced on command [4]. Yet such prototypic facial 
expressions occur relatively rarely in everyday life; 
emotions and attitudinal states are displayed more 
often by subtle changes in one or few discrete facial 
features such as raising the eyebrows in disbelief. 
Instead of being another approach to automatic 
detection of prototypic facial expressions of emotions, 
this work attempts to recognize a large range of facial 
behavior by recognizing facial actions (i.e. atomic 
facial signals) that produce expressions. 



 
The proposed method is based upon the Facial 

Action Coding System (FACS) [5]. This is the best 
known and the most commonly used system 
developed for human observers to measure facial 
movement in terms of visually observable muscle 
actions. With FACS, a human observer decomposes 
an observed facial expression into one or more of 44 
FACS-defined Action Units (AUs) that produced the 
expression in question. 

Few efforts were reported towards automatic AU 
detection from face image sequences. Tian et al. [6] 
presented a system based upon lip tracking and 
template matching that recognizes 15 AUs occurring 
alone or in a combination in a frontal-view face image 
sequence. Bartlett et al. [7] reported on automatic 
detection of 3 AUs using Gabor filters, support vector 
machines and Hidden Markov Models to analyze a 
frontal-view face image sequence. Pantic et al. [8] 
reported on efforts to detect 20 AUs occurring alone 
or in a combination in profile-view face image 
sequences.  

In contrast to these existing AU detectors, which 
can detect a certain set of AUs and none other, the 
method for AU detection presented here seems to 
represent a more general solution to automatic AU 
detection. Namely, if presented with a suitable data 
set, the proposed method could be trained to detect 
any arbitrary facial expression (i.e. activation of an 
individual AU or a set of AUs). When trained and 
tested on the Cohn-Kanade image database [11], used 
by Tian et al. [6] as well, the proposed method 
accomplished an average recognition rate of 76.2% for 

15 AUs occurring alone or in combination in an input 
frontal-view face image sequence. In Table 1 a 
description of the detected AUs is given. 

The proposed method performs AU recognition 
using temporal templates as input data. Section 2 
elaborates on temporal templates and how we 
construct them from image sequences. A two-stage 
learning machine, combining a kNN algorithm and a 
rule-based system, performs the actual recognition of 
AUs. To score a specific AU (AU combination), it 
verifies whether a particular temporal template is 
present in a particular facial region. Section 3 provides 
the details of the pertinent two-stage learning machine. 
Finally, experimental results and concluding remarks 
are summarized in sections 4 and 5. 

 
2    TEMPORAL REPRESENTATION 
 
Bobick and Davis first introduced temporal templates 
[9]. They are 2D images constructed from image 
sequences, effectively reducing a 3D spatio-temporal 
space to a 2D representation. They eliminate one 
dimension while retaining the temporal information; 
the locations where movement occurred in an input 
image sequence are depicted in the related 2D image.  

To be able to construct temporal templates we 
either need the background to be static or the motion 
of the object of interest to be separable from the 
background. If the temporal template is constructed 

without preserving the information about the time 
when the movement occurred, we refer to it as a 
Motion Energy Image (MEI). If instead we preserve 
the temporal motion history information by assigning 
different intensities to different moments of the 
movement, we refer to it as a Motion History Image 
(MHI) (Fig. 1). In our system we will use the MHIs, 
because we are interested in the motion history.  
 

2.1 Face Image Sequence Registration 
As already mentioned above, useful temporal 
templates can be constructed only if the observed 
background is static or if the motion of the object of 
interest is separable from the background. 

 Furthermore, to be able to compare separate 
temporal tem-plates, the faces in the image sequences 
must have the same position and orientation. Hence, to 
construct useful comparable temporal templates, we 

Action 
Unit 

Description 

AU1 Raised inner eyebrow 
AU2 Raised outer eyebrow 
AU4 Eyebrows drawn together, lowered 

eyebrows 
AU6 Raised cheek, compressed eyelid 
AU7 Tightened eyelid 
AU9 Wrinkled nose 
AU11 Deepened nasolabial furrow 
AU12 Lip corners pulled up 
AU15 Lip corners depressed 
AU17 Chin raised 
AU20 Mouth stretched horizontally 
AU25 Lips parted (jaws on each other) 
AU26 Jaw dropped 
AU27 Mouth stretched vertically (mouth wide 

open) 

Table 1. Description of Action Units as defined in FACS. 
The first column lists the AUs detected in our experiments, 
the second gives a description of the AUs. 

 
Figure 1. Creating MHI from an image sequence 



need the input face image sequences to be registered 
in two ways. First, all rigid head movements within 
one image sequence must be eliminated. Second, all 
utilized image sequences must have the faces in the 
same position and on the same scale.  

To achieve the first registration, we first select by 
hand 9 facial points from the first frame of the image 
sequence (Fig. 2). These points are then tracked in all 
subsequent frames using a condensation based 
template tracking technique [10]. The size of the 
template being used has an impact on the tracking 
performance. Experimental trials revealed that for a 
large window (100 x 100 pixels) the best performance 
is achieved. For registration of each frame with 
respect to the first frame we apply an affine 
transformation. This transformation uses facial points 
whose spatial position remains the same even if a 
facial muscle contraction occurs. Otherwise we cannot 
be sure whether the movement of a point is due to 
unwanted rigid head motion or due to the activation of 
AUs. We call this process intra-registration. 

As already mentioned above, all image sequences 
must be registered with respect to a predefined set of 
facial points, otherwise faces in different image 
sequences could have different position as well as 
variations in size. This inter-registration process is 
also carried out by an affine transformation. Under the 
assumption that all image sequences begin with a 
neutral facial expression, the transformation matrix is 
computed by comparing the neutral position of the 
facial points defined for the current image sequence 
with the predefined position of these facial points. 

 
2.2 Temporal Template Construction 
Once properly registered, the available image 
sequences are used to construct temporal templates. 
Since we do not employ MEIs in the further AU 

recognition process, we are only interested in the 
construction of MHIs. Let I(x, y, t) be an image 
sequence of k frames and let D(x, y, t) be a binary 
image sequence indicating regions of motion, where x 
and y are the spatial coordinates of picture elements. 

In an MHI, say Hτ, the pixel intensity is a function 
of the temporal history of motion at that point with 
τ being the period of time to be considered. Bobick 
and Davis' implementation of the MHI is as follows 
[7]: 
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Bobick and Davis studied spontaneous body gestures. 
In their problem definition it is not known when the 
movement of interest begins or ends. Therefore they 
need to vary the observed periodτ and try to classify 
all resulting MHIs. Because we assume that the 
beginning and end of a facial expression are known 
and coincide with the duration of an image sequence, 
we don't need to vary τ . Therefore we are able to 
normalize the temporal behaviour by distributing the 
grey values in the MHI over the available range (0-
255, assuming that we are using 8 bit greylevel 
images). Thus, variations in display duration of an AU 
are canceled out, which makes it possible to compare 
facial expressions that have a different period but are 
otherwise identical.  

Initially the image sequences may have a different 
number of frames. So, while the MHIs are temporally 
normalized, the number of history levels in them may 
still differ from one image sequence to another. To be 
able to compare the sequences properly, we want to 
create all MHIs having a fixed number of history 

Figure 3. Facial regions for 
measurement of temporal template 

Figure 2.  Manually selected 
facial points 



Table 2. Expert rules. The first column lists the AU 
prediction made by the kNN learner, the second lists the 
rules and the third column lists the AU that is assigned 
to the sample if the rule fires. The Ri are the facial 
regions where activation is characteristic for certain 
AUs. The thi are thresholds for each (part of a) rule. 

levels n. Therefore the image sequence is sampled to 
n+1 frames. The number of history levels is 
experimentally determined to be the number that, 
when used to construct the MHIs, results in the 
highest recognition rate. Using the known parameter n 
we modified the MHI operator into: 
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where ( )ns /255= is the intensity step between two 
history levels and ( ) 0,, =tyxH for t < 0 
.  
 
3   TWO STAGE LEARNING MACHINE 
 
Initially we used just a simple kNN learning machine 
to classify an input image sequence into one of m 
facial expression classes, each of which corresponds 
either to an individual AU or to an AU combination. 
The employed kNN algorithm is straightforward: for a 
test sample it uses a distance metric to compute which 
k (labeled) training samples are 'nearest' to the sample 
in question and then casts a majority vote on the labels 
of the nearest neighbors to decide the class of the test 
sample. Parameters of interest are the distance metric 
being used and k, the number of neighbors to consider. 
In our tests we tried the Manhattan, Euclidian, 
Tanimoto and Minkowski distances. Experimental 
evaluation showed that the simple Euclidian distance 
measure dist performs the best: 
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where x is the test sample, x’  is a training sample and 
d is the dimensionality of our sample space.  

Unfortunately, applying kNN only resulted in 
recognition rates that were lower than what we 
expected (see Tables 2 and 3). Inspection of the test 
results revealed that some of the mistakes that the 
classifier made are deterministic. To exploit these 
deterministic mistakes we created a set of rules based 
on the knowledge of a human FACS coder. We 
defined facial regions for which the presence of 
motion characterizes a certain AU. For example, 
activation in region R2 is characteristic for the 
activation of AU 2 (see Fig. 3). We calculate this 
activation in region Ri as: 
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where H is the MHI operator defined in (2) and n is  

 
 the number of history levels in each MHI. Note 

that the activation measure assigns higher values to 
recent facial motion than to motion that occurs further 
in the past. The regions are positioned relative to the 
same facial points we used for the registration of the 
image sequences. Using these regions we were able to 
construct a set of rules, which are based on the 
activation values of facial regions typical for a certain 
AU.  With these rules we can correctly reclassify test 
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Table 3. Confusion matrix for lower-face AUs. Numbers in parentheses are results for kNN only. 
  Predicted label       
Real label AUs 25 26 27 12 17 15+17 12+25 20+25 11+20+25 
 25 7(7) 3(3) 0(0) 0(1) 0(0) 0(0) 1(1) 1(0) 0(0) 
 26 2(2) 11(11) 4(4) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
 27 0(0) 4(5) 15(14) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 
 12 0(1) 0(0) 0(0) 6(6) 0(0) 0(0) 4(3) 0(0) 0(0) 
 17 1(1) 0(0) 0(0) 0(1) 5(5) 1(1) 0(0) 1(0) 2(2) 
 15+17 1(3) 1(1) 0(0) 0(0) 1(1) 14(12) 0(0) 0(0) 0(0) 
 12+25 0(0) 1(1) 0(0) 1(2) 0(0) 0(0) 20(19) 0(0) 0(0) 
 20+25 0(0) 1(1) 1(1) 0(2) 0(0) 1(1) 1(1) 5(3) 0(0) 
 11+20+25 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 2(2) 0(0) 1(1) 
Recognition rate: 70.6% (65.5%)         

 
Table 4. Confusion matrix for upper-face AUs. Numbers in parentheses are results for kNN only. 

  Predicted label    
Real label AUs 1 4 6 1+2 1+4 4+7+9 

 1 2(0) 0(2) 0(0) 0(0) 1(1) 0(0) 
 4 1(0) 5(4) 1(1) 0(0) 1(3) 0(0) 
 6 0(0) 1(1) 24(24) 1(1) 0(0) 0(0) 
 1+2 0(0) 1(1) 0(0) 6(6) 1(2) 0(0) 
 1+4 0(0) 0(0) 0(2) 1(1) 5(3) 0(0) 
 4+7+9 0(0) 1(0) 0(0) 0(0) 0(2) 3(2) 

Recognition rate: 81.8% (69.6%)    
 
samples that were at first misclassified by the kNN 
learner. For example, the kNN learning machine often 
confuses AU4 and AU1+AU4. Both produce activity  
in the same part of the MHI, but AU4 causes the 
eyebrows to move inward and downward, while 
AU1+AU4 first causes an upward movement of the 
eyebrows followed by an inward and downward 
movement. This results in high activation between the 
brows and relatively low activation above the inner 
corners of the brows. Fig. 3 shows the defined facial 
regions and Table 2 lists the rules we applied to our 
system.  
For each data set, the values of the thresholds thi are 
determined automatically during the training phase. Their 
values are set to the maximum or minimum activation of 
the training samples of the kNN-predicted class 
(depending on the sign: >, respectively <, see Table 2). 
This reduces the probability that test samples that were 
correctly classified by the kNN classifier, get 
misclassified in the second stage. For example, suppose 
we know that AUx and y are often confused and that high 
activation in region Rj indicates AUy. If the kNN-
classifier decides AUx for test sample i, we will only 
reclassify i if the activation of region Rj is greater than the 
maximum activation of the training samples labeled as 
AUx. 

 
4    EXPERIMENTAL EVALUATION 
 
The database used in experimental studies on our system 
is the Cohn-Kanade AU-Coded Facial Expression Image 
Database [11]. The database consists of video’s of facial 
expressions, made by 138 subjects. Each recording 

contains one combination of Aus. We used the pertinent 
imagery to recognize 9 lower-face AU combinations 
(Table 3) and 6 upper-face AUs (Table 4). We did so by 
training two different learning machines: one for the upper- 
face AUs and one for the lower-face AUs. 

The parameter k of the kNN algorithm is an important 
parameter affecting the recognition rate. Setting k = 4 for 
the upper-face AU recognition and k = 5 for the lower-
face AU recognition resulted in the highest recognition 
rates. 

Tables 2 and 3 show the confusion matrices of upper 
and lower face AU detection. As can be seen, the 
algorithm using kNN only confuses the class containing 
AU4 with AU1+AU4. The second stage correctly 
reclassifies two out of three of these confusions. 

However, we are not able to solve all confusions using 
the rule-base technique. Table 3 shows that our system 
confusesAUs 25, 26  and 27. For AU 25, the lips must be 
parted. For AU26 the jaw must be slightly dropped. For 
AU27 the jaw is dropped low and the mouth is stretched 
vertically. However, sometimes the difference is difficult 
to see and even human FACS coders have trouble 
distinguishing between these AUs.  

Also, multiple demonstrations of our system have 
been held. Using a simple webcam and no alterations to 
the lighting condition, in all occasions the system 
performed as expected, although no recognition rates have 
been recorded. 

 
5    CONCLUSIONS 
 
This paper presents a method for the automatic 
recognition of facial action units (AUs) using temporal 



templates. It proposes a two-stage classifier, which at the 
first stage consists of a general kNN classification scheme 
and at the second stage uses domain specific knowledge 
in a rule-based system. We have applied our method to 
real image sequences from the Cohn-Kanade database and 
obtained a recognition rate of 70.6% for lower face AUs 
and a recognition rate of 81.8% for upper face AUs.  
For future research, we would consider representations of 
the image sequences by features that can be extracted 
from the temporal templates. In particular, we will 
investigate on features that can describe the motion 
density and motion direction. Furthermore, special 
consideration should be given to the appropriate 
modeling of the temporal dynamics of the extracted 
features and their interdependencies. To this direction, 
further research with. Hidden Markov Models or 
Dynamic Bayesian Networks is needed.  

Another approach is to further exploit the temporal 
dynamics of MHIs by introducing Multilevel Motion 
History Images (MMHIs), which overcome the problem 
of self-occlusion inherent to normal MHIs. This would 
give a better representation of the order and speed in 
which the facial motion occurs and would also allow us to 
use a better definition for the facial region activation 
value (equation 4). 

Finally, another issue is the limitations imposed by the 
absence of a sufficient number of training samples for 
each AU (or for each combination of AUs). Training and 
testing in larger databases and addressing the issues 
related to combinations of AUs are therefore directions 
that we should consider. 
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