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Facial Action Unit Detection in Face Video

M.F. Valstar

Abstract

Enabling computer systems to correctly analyse human behavior is an
unsolved problem in Artificial Intelligence. Recognizing human facial ex-
pressions automatically by a robot or computer is an important aspect
of this analysis. A system that enables fast and robust facial action unit
(AU, i.e. atomic facial signal) recognition would have many applications
in behavioral science, medicine, security and man machine interaction.
By detecting these AUs we can detect any facial expression, because ev-
ery facial expression can be expressed as a composition of AUs. This work
investigates the possibility to detect AUs using temporal templates and
tracked facial micro features as a data representation. Temporal Tem-
plates is a novel data representation for the detection of facial action from
face video. Two systems have been developed, one using temporal tem-
plate data representation and a two-stage k-Nearest Neighbor-rulebase
classifier and the other using the tracked facial micro features data rep-
resentation and a Support Vector Machine classifier. Both systems have
been evaluated on two databases, namely the well-known Cohn-Kanade fa-
cial expression database and the recently developed MMI-Face-Database.
The experimental results suggest that both data representations are use-
ful for the detection of AUs. We report results for the detection of 21 AUs
using temporal templates and results for the detection of 15 AUs using
tracked facial micro features.

1 Background

1.1 Research motivations

The human face is involved in an impressive variety of different activities. It
houses the majority of our sensory apparatus: eyes, ears, mouth and nose, al-
lowing the bearer to see, hear, taste and smell. Apart from these biological
functions, the human face provides a number of signals essential for interper-
sonal communication in our social life. The face houses the speech production
apparatus and is used to identify other members of the species, to regulate the
conversation by gazing or nodding, and to interpret what has been said by lip
reading. It is our direct and naturally preeminent means of communicating and
understanding somebody’s affective state and intentions based on the shown
facial expression [1]. Personality, attractiveness, age and gender can be also



derived from someone’s face. Thus the face is a multi-signal sender/receiver
capable of tremendous flexibility and specificity.

Automating the analysis of facial signals, especially rapid facial signals (i.e.
facial muscle actions), would be highly beneficial for fields as diverse as secu-
rity, behavioral science, medicine, communication, and education. In security
contexts, facial expressions play a crucial role in establishing or detracting from
credibility. In medicine, facial expressions are the direct means to identify when
specific mental processes are occurring, for instance when somebody is sleepy,
upset or bored. In education, pupils’ facial expressions inform the teacher of
the need to adjust the instructional message. As far as natural interfaces be-
tween humans and computers (PCs / robots / machines) are concerned, facial
expressions provide a way to communicate basic information about needs and
demands to the machine. In fact, automatic analysis of rapid facial signals seem
to have a natural place in various vision sub-systems, including automated tools
for gaze and focus of attention tracking, lip reading, bimodal speech processing,
face / visual speech synthesis, face-based command issuing, and facial affect pro-
cessing. Where the user is looking (i.e., gaze tracking) can be effectively used to
free computer users from the classic keyboard and mouse. Also, certain facial
signals (e.g., a wink) can be associated with certain commands (e.g., a mouse
click) offering an alternative to traditional keyboard and mouse commands. The
human capability to ’hear’ in noisy environments by means of lip reading is the
basis for bimodal (audiovisual) speech processing that can lead to the realization
of robust speech-driven interfaces. To make a believable ’talking head’ (avatar)
representing a real person, tracking the person’s facial signals and making the
avatar mimic those using synthesized speech and facial expressions is compul-
sory. The human ability to read emotions from someone’s facial expressions is
the basis of facial affect processing that can lead to expanding interfaces with
emotional communication and, in turn, to obtaining a more flexible, adaptable,
and natural interaction between humans and machines. It is this wide range
of principle driving applications that has lent a special impetus to the research
problem of automatic facial expression analysis and produced a surge of interest
in this research topic [2].

Altough humans are perfectly capable to estimate a persons affectionate
state given only a static image, there is undoubtedly more information about fa-
cial behavior contained in time-dynamic observations from face video. Therefore
we will pursue in this work approaches that aim to benefit from this additional
information.

1.2 FACS

Rapid facial signals are movements of the facial muscles that pull the skin,
causing a temporary distortion of the shape of the facial features and of the
appearance of folds, furrows, and bulges of skin. The common terminology for
describing rapid facial signals refers either to culturally dependent linguistic
terms indicating a specific change in the appearance of a particular facial fea-
ture (e.g., smile, smirk, frown, sneer) or to the linguistic universals describing



the activity of specific facial muscles that caused the observed facial appearance
changes. There are several methods for linguistically universal recognition of
facial changes based on the facial muscular activity [3]. >From those, the fa-
cial action coding system (FACS) proposed by Ekman et al. [4, 5] is the best
known and most commonly used system. It is a system designed for human
observers to describe changes in the facial expression in terms of visually ob-
servable activations of facial muscles. The changes in the facial expression are
described with FACS in terms of 44 different Action Units (AUs), each of which
is anatomically related to the contraction of either a specific facial muscle or a
set of facial muscles. Examples of different AUs are given in Fig. 1. Along with
the definition of various AUs, FACS also provides the rules for visual detection
of AUs and their temporal segments (onset, apex, offset) in a face image. Using
these rules, a FACS coder (that is a human expert having a formal training in
using FACS) decomposes a shown facial expression into the AUs that produce
the expression. Although FACS provides a good foundation for AU-coding of
face images by human observers, achieving AU recognition by a computer is
by no means a trivial task. A problematic issue is that AUs can occur in more
than 7000 different complex combinations [3], causing bulges (e.g., by the tongue
pushed under one of the lips) and various in- and out-of-image-plane movements
of permanent facial features (e.g., jetted jaw) that are difficult to detect in 2D
face images [2].

1.3 Automating FACS

Few approaches have been reported for automatic recognition of AUs in images
of faces. Some researchers described patterns of facial motion that correspond
to a few specific AUs, but did not report on actual recognition of these AUs.
Examples of such works are the studies of Mase [6], Black and Yacoob [7], and
Essa and Pentland [17]. Almost all other efforts in automating FACS coding
addressed the problem of automatic AU recognition in face video. To detect 6
individual AUs in face image sequences free of head motions, Bartlett et al. [9]
used a 61 x 10 x 6 feed-forward neural network. They achieved 91% accuracy
by feeding the pertinent network with the results of a hybrid system combining
holistic spatial analysis and optical flow with local feature analysis. To recognize
8 individual AUs and 4 combinations of AUs in face image sequences free of head
motions, Donato et al. [10] used Gabor wavelet representation and independent
component analysis. They reported a 95.5% average recognition rate accom-
plished by their method. To recognize 8 individual AUs and 7 combinations of
AUs in face image sequences free of head motions, Cohn et al. [11] used facial
feature point tracking and discriminant function analysis. They achieved an
85% average recognition rate by their method. Tian et al. [12] used lip tracking,
template matching and neural networks to recognize 16 AUs occurring alone or
in combination in nearly frontal-view face image sequences. They reported an
87.9% average recognition rate attained by their method. Braathen et al. [13]
reported on automatic recognition of 3 AUs using particle filtering for 3D track-
ing, Gabor filters, Support Vector Machines, and Hidden Markov Models to
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Figure 1: Some examples of Facial Action Units (AUs)

analyze an input face image sequence having no restriction placed on the head
pose.

In contrast to all these approaches to automatic AU detection, which deal
only with frontal-view face images and cannot handle temporal dynamics of
AUs, Pantic and Patras [14] addressed the problem of automatic detection of
AUs and their temporal segments (onset, apex, offset) from profile-view face
image sequences. They used particle filtering to track 15 fiducial facial points
in an input face-profile video and temporal rules to perform both automatic
segmentation and recognition of temporal segments of 23 AUs occurring alone
or in a combination in the input video sequence. They achieved an 88% average
recognition rate by their method.

The only work reported up to date that addresses automatic AU coding
from static face images is the work of Pantic and Rothkrantz [15]. It concerns
an automated system for AU recognition in static frontal- and/or profile-view



color face images. A multidetector approach to facial feature localization is
utilized to spatially sample the face profile contour and the contours of the facial
components such as the eyes and the mouth. From the contours of the facial
features, 10 profile-contour fiducial points and 19 fiducial points of the contours
of the facial components are extracted. Based on these, 32 individual AUs
occurring alone or in combination are recognized using rule-based reasoning.
With each scored AU, the utilized algorithm associates a factor denoting a
certainty with which the pertinent AU is scored. A recognition rate of 86% is
achieved by the method.

In summary, four critical issues in automated FACS coding can be distin-
guished. The first one concerns dealing with head pose variations. Most systems
have limited capabilities to overcome the problems caused by variations in head
pose. Xiao et. al. [16] reported on a method for recovering the full motion
(3 rotations and 3 translations) of the head from an input video using a cylin-
drical head model. Using the recovered motion parameters the face region can
be stabilized and processed with a facial expression analyzer. The second issue
concerns the temporal aspects of facial expressions. Timing of different AUs, the
speed of the activation of an AU, and onset-apex-offset detection, are just three
examples of the temporal aspects of facial action. Researchers in automatic
FACS coding are just starting to pursue these issues. Third, occlusions in the
face often pose a problem to automatic FACS coding. Beards, moustaches and
glasses complicate the detection of AUs. The robustness to these occlusions vary
for each system but most publications do not mention how well the proposed
system copes with this particular problem. Only Essa and Pentland report a
system that is able to handle distractions like facial hair and glasses. The last
issue is the lack of a publicly available set of properly annotated reference im-
ages and videos. This makes it difficult to benchmark the various systems that
have been developed in the past. The current standard is the Cohn-Kanade
database (see section 4.1), but there are some serious limitations to this dataset
which makes it unsuitable as a proper benchmark set as explain in section 4.1.

In this work, we do not investigate the problems of head pose and the tem-
poral dynamics of facial actions. Regarding the problem of occlusion, the devel-
oped systems are robust to the distraction caused by glasses, and in the case of
temporal templates data representation the method is also robust to distractions
caused by facial hair. Furthermore, we have started the construction of a pub-
licly available database containing videos and still images of subjects displaying
all possible facial actions (see section 4.1). We believe that this database is very
well suited for benchmarking different automatic FACS coding systems.

Table 1 summarizes the AU detection systems that are discussed above.

1.4 Outline of the paper

The purpose of this work is to investigate new data-representation /classification
combinations in search of a way to robustly detect as many different AUs as
possible. For this goal, we will use the novel application of the temporal template
data representation to facial action detection and we will compare this with a



Table 1: Summary of AU detection systems

System Head Face Data rep- | Classifier AUs | Rec.
Pose Database | resentation Rate
Bartlett
et. al. | Frontal | System Optical Neural 6 | 91%
1999 [9] specific flow, local | Network
feature
analysis
Donato
et. al. | Frontal | System Gabor Independent| 8 | 95.5%
1999 [10] specific wavelets Compo-
nent
Analysis
Cohn et.
al. 1999 | Frontal Cohn- Tracked Discriminant 8 85%
[11] Kanade Facial Function
Features Analysis
Tian et.
al. 2001 | Frontal | Cohn- Tracked Neural 16 | 87.9%
[12] Kanade Facial Network
Features,
template
matching
Braathen
et. al. | Frontal | System Tracked Support 3 87.1%
2002 [13] specific Facial Vector
Features, Machines,
Gabor Hidden
wavelets Markov
Model
Pantic
and Pa- | pofle | MMIL Tracked | Expert 23 | 88%
tras 2004 .
Face-DB | Facial System
[14] F
eatures
Pantic
and
Frontal, | System Contour Expert 32 | 86%
Rothkranty Profile Specific Regression | System
2004 [15] p 8 Y

standard data representation, namely, tracked facial features.

The remainder of the paper is organized as follows: Section 2 describes the
two data representations whose properties we have studied. Section 3 describes
different pattern classifiers we have used. In section 4 we present the experi-



ments carried out on two different datasets: the Cohn-Kanade Database and
the MMI-Face-DB. This section also includes a discussion of the experimental
results. Finally, in section 5 we present our conclusions and suggestions for
future research.

2 Data representation

Two different data representations have been examined for the purpose of AU
detection in face video. The first relates to temporal templates, a 2-dimensional
representation of a movement in a 3-dimensional space (two spatial dimensions
and the dimension of time). Section 2.1 elaborates on temporal templates and
how we construct them from input image sequences. A well known deficiency
of temporal templates is motion self occlusion [18]. In section 2.1.3 we propose
Multilevel Motion History Imaging (MMHI), a new temporal-template-based
representation technique that records multiple motion instances at the same
coordinates of an image sequence.

The second data representation that we investigated concerns fiducial facial
points and the distances between them. In frontal face video we track 20 fiducial
facial points and calculate parameters such as distances between specific pairs
of these points or spatial deviations of points from their original position. These
parameters alter with AU activation. Section 2.2 elaborates on these points and
the different features we have used for AU detection.

2.1 Temporal Templates

Bobick and Davis first introduced temporal templates [18]. They are 2D images
constructed from image sequences, showing where and (in the case of Motion
History Images) when motion occured in an image sequence. They effectively
reduce a 3-dimensional spatio-temporal input space (video) to a 2-dimensional
output space (image).

If the temporal template is constructed without preserving the information
about the time when the movement occurred, we refer to it as a Motion Energy
Image (MEI). If instead we preserve the temporal motion history information
by assigning different intensities to different moments of motion, we refer to the
resulting image as a Motion History Image (MHI). In our system we will only
use MHIs since we are interested in the timing of the facial motion caused by
the activation of AUs.

2.1.1 Face Image Sequence Registration

To be able to construct temporal templates we either need the background
to be static or the motion of the object of interest to be separable from the
background. Furthermore, to be able to compare separate temporal templates
in a meaningfull way, the faces in the image sequences must have the same
position, scale and orientation. Hence, to construct useful comparable temporal



Figure 2: Facial points used for the registration of images for temporal template
construction

templates, we need the input face image sequences to be registered in two ways.
First, all rigid head movements within one image sequence must be eliminated.
Second, all utilized image sequences must have the faces in the same position,
orientation and scale.

To achieve both registration, we first select by hand 9 facial points from the
first frame of the image sequence (Fig. 2). These points are then tracked in all
subsequent frames using a condensation based template tracking technique [19].
The size of the image patch around the tracked points that is used as the tem-
plate has an impact on the tracking performance. Experimental trials revealed
that the tracker perfomed best using a large image patch (100x100 pixels for
our images). For registration of each frame with respect to the first frame we
apply an affine transformation, using stable facial points whose spatial position
remains the same even if a facial muscle contraction (AU activation) occurs.
Otherwise, if we would use some other points, we could not be sure whether
the movement of a point is due to unwanted rigid head motion or due to the
activation of one or more AUs. We call this process intra-registration, as the
registration is performed within one image sequence.

The second registration is performed between different image sequences and
we will therefore refer to it as inter-registration. All image sequences are reg-
istered with respect to a predefined set of facial points. Otherwise faces in
different image sequences could have different positions as well as variations in
size, making a template-based comparison impossible. This inter-registration



process is also carried out by an affine transformation. Under the assumption
that all image sequences begin with a neutral facial expression, the transforma-
tion matrix is computed by comparing the neutral position of the facial points
taken from the first frame of the current image sequence with the predefined
position of the same facial points.

2.1.2 Temporal Template Construction

Once properly registered, the available image sequences are used to construct
temporal templates. Since we do not employ MEIs in this work, we will only
elaborate on the construction of MHIs. Suppose our image sequence consists of
k frames. Let I (z,y,t), t = 1...k, be a sequence of pixel intensities of the ¢’th
frame and let D (z,y,t) be the binary image indicating regions of motion that
results from pixel-intensity-change detection, that is by thresholding

|I (.’L’,y,t) - I(xayat - 1)| > thr (1)

where z and y are the spatial coordinates of picture elements and th; is the
intensity difference threshold between two images for motion detection, a pa-
rameter that has to be determined experimentally.

In a MHI, say H,, the pixel intensity is a function of the temporal history of
motion at that point with 7 being the period of time to be considered. Bobick
and Davis’ implementation of the MHI is as follows:

B T D(z,y,t)=1
H‘I’ (x,yat) - { max ([HT (_r,y,t — ]_) — ]_] 70) otherwise (2)

Bobick and Davis studied body gestures. In their problem definition it is not
known when the movement of interest begins or ends. Therefore they need to
vary the observed period 7 and try to classify all the resulting MHIs. Because we
assume that the beginning and end of a facial expression are known and coincide
with the duration of an image sequence, we do not need to vary 7. Because of
this we are able to normalize the temporal behavior by distributing the grey
values in the MHI over the full range of our output image (0-255, assuming that
we are using 8 bit greylevel images). Thus, variations in display duration of an
AU are canceled out, which makes it possible to compare facial expressions that
have a different period but are otherwise identical.

Initially the image sequences may have a different number of frames. So,
while the MHIs are temporally normalized, the number of history levels in them
may still differ from one image sequence to another. To be able to compare the
sequences properly we want to create all MHIs containing the same fixed number
of history levels ny,. Therefore the image sequence is sampled to np + 1 frames.
The number of history levels is experimentally determined to be the number
that, when used to construct the MHIs, results in the highest recognition rate.
Using the known parameter n; we modify the MHI operator into:

B s¥t D (z,y,t) =1
H(myy;t) - { H(m’yjt — 1) otherwise (3)



(a) Apex frame of an image se- (b) MHI constructed from

quence displaying a smile the image sequence that con-
tained the frame shown in fig.
a

Figure 3: MHI construction.

Figure 4: MHI of brows moving up (left) and down (right)

where s = 255/ny, is the intensity step between two history levels and H (z,y,t) =
0 for t < 0. Fig. 3 shows an image of a smile (AU6 + AU12 + AU25) at apex
and the corresponding MHI.

2.1.3 Multilevel Motion History Images

A drawback innate to temporal templates as proposed by Bobick and Dayvis is
the problem of motion self occlusion due to overwriting. Let us explain this
problem by giving an example. Let us denote an upward movement of the
eyebrows as action 4; and a downward movement of the eyebrows back to the
neutral position as action A,. Figure 4 shows one MHI of the brows moving up
and one MHI of the brows moving down. Both actions produce apparent motion
in the facial region above the neutral position of the eyebrows. If As follows
A; in time and if the motion history of both actions is recorded within a single



MHI, then the motion of history of action As overwrites the motion history of
Ajy; the information about the motion of action A; is utterly lost. To overcome
this problem, we propose a way to record the motion history at multiple time
intervals, constructing Multilevel Motion History Images (MMHIs), instead of
recording the motion history once for the entire image sequence and constructing
a single MHI.

In a MMHI, we want to encode motion occurring at different time instances
t on the same spatial location {z,y}, such that it is uniquely decodable later
on. To do so, we use a simple bitwise coding scheme. If motion occurs at
time instance ¢ at a pixel {z,y}, we add to the current value of the MMHI
M (z,y,n — 1) a value that is uniquely related to ¢t. Using this coding scheme
results in the following representation for a MMHI constructed from an image
sequence of n frames:

n

M (z,y,n) = 3 D (z,y,6) 2" ()

t=1

Because of the bitwise coding scheme, we are able to separate multiple motions
occurring at the same position in the classification stage.

2.2 Fiducial Facial Points and Distances

Many AUs can be described by specific movements of a few characteristic facial
points. Raising or lowering the eyebrows, dropping the jaw, parting the lips,
etc. can all be detected by applying a temporal analysis of spatial relations
between fiducial facial points.

2.2.1 Face Model

A face model is described by the set P of fiducial facial points. The choice
of points consents to two requirements. First, spatio-temporal changes in the
position of point P; in the {z,y} plane of a frontal face video must provide
information about the activation of at least one AU. The corners of the eyebrows,
eyes and mouth are all good examples of points that provide such information.
The second requirement is that a point is tracable using a state of the art point
tracker. Although the motion of a point positioned on the cheek would give us
very valuable information about the activation of AU6 indeed, it is impossible
to track such a point due to the lack of ’facial landmarks’ surrounding such a
point.

Our face model is described by a set of 20 fiducial facial points, as shown
in Fig. 5 . Allthough all points seemed to be traceable, it turned out during
the experiments that the points F, F1, G and G1 are difficult to track robustly.
Motion of point N does not by itself contribute to the detection of AUs. However,
it is a stable point [15] tracked extremely robustly. This allows us to use it for
registration purposes and as a reference point for calculating various distances
to other fiducial facial points. We will elaborate on this in section 2.2.3.
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Figure 5: Frontal face model consisting of 20 fiducial facial points

2.2.2 Facial Point Tracker

At this moment the initial positions of these points have to be selected manu-
ally in the first frame. The positions in all subsequent frames are determined
with a tracker using Particle Filtering with Factorized Likelihoods [20]. Particle
Filtering with Factorized Likelihoods is an extension to the Auxiliary Particle
Filtering theory introduced by Pitt and Shephard [21], which itself is an exten-
sion to the classical particle filtering, or Condensation, proposed by Isard and
Blake [19]. We will provide a short overview of how this tracker works. An in-
troduction to Condensation and Particle Filtering with Factorized Likelihoods
is given. For detailed descriptions of the various methods please refer to the
relevant papers.

Condensation The main idea of particle filtering is to maintain a particle
based representation of the a posteriori probability p(a |Y) of the state a
given all the observations Y up to the current time instace. This means that
the distribution p(a | Y’) is represented by a set of pairs {(sg,m,)} such that
if s is chosen with probability equal to 7, then it is as if s, was drawn from
p(a|Y). In the particle filtering framework our knowledge about the a poste-
riori probability is updated in a recursive way. Suppose that we have a particle
based representation of the density p(a~|Y ™), that is, we have a collection
of K particles and their corresponding weights (i.e. {(s;, 7} )})- Then, the
Condensation Particle Filtering can be summarized as follows:

1. Draw K particles s, from the probability density that is represented by
the collection { (s, ,m, )}

2. Propagate each particle s, with the transition probability p(ala™) in
order to arrive at a collection of K particles sy.



3. Compute the weights 7 for each particle as follows,

T =Py | sk) (5)
Then normalise so that >, 7 = 1.

This results in a collection of K particles and their corresponding weights (i.e.
{(sk,mr)} which is an approximation of the density p (a|Y").

Factorized Likelihoods Classical particle filtering has three major draw-
backs. The first drawback is that a large amount of particles that result from
sampling from the proposal density p(a|Y ™) (i.e. step 1 of the Condensation
algorithm) might be wasted because they are propagated into areas with small
likelihood, as determined in step 3 of the Condensation algorithm. The sec-
ond problem is that the above scheme ignores the fact that while a particle
Sk = {Sk1, Sk2-.-skn) might have low likelihood, it can easily happen that parts
of it might be close to the correct solution. Finally, the third problem is that
the estimation of the particle weights does not take into account the interde-
pendencies between the different parts of the state a.

Particle filtering with factorized likelihoods [20] attempts to solve these
problems in one step, given the case that the likelihood can be factorized,
that is in the case that p(y|a) = ], p(y|as). It uses a proposal distribution
g () the product of the posteriors of each «; given the observations, that is
g(a) = [, p(aily), from which we draw samples s;. These samples are then
assigned weights 7, using the same proposal distribution. We now find 7, and
sy as follows:

1. Propagate all particles s, via the transition probability p (a;|a~) in order
to arrive at a collection of K sub-particles p;;,. Note, that while s, has
the dimensionality of the state space, the u;; have the dimensionality of
the partition .

2. Evaluate the likelihood associated with each sub-particle p;, that is let
ik = p(ylpik)-

3. Draw K particles s, from the probability density that is represented by
the collection {(s, , A7, )}

4. Propagate each particle s, with the transition probability p(a;la™) in
order to arrive at a collection of K sub-particles s;;. Note, that s;; has
the dimensionality of the partition 4.

5. Assign a weight m;, to each subparticle as follows, w;, = ﬂ%‘iﬁl, ik =
ik With this procedure, we have a particle-based representation

i
for each of the N posteriors p(e; | y). That is, we have N collections
(sik, ) ™k, one for each .



6. Sample K particles from the proposal function g (a) = [[; p(a; | Y). This
is approximately equivalent to constructing each particle sy = (Sg1-.-Sk4---SkN)
by sampling independently each s;;, from p(a; | Y).

7. Assign weights 7, to the K samples as follows:

ey Sp(sels ) p (s 1Y)
[Lp(salY™)  TL 2,2 (sinls; ) p (s (V™)

(6)

Tk

The weights are normalized to sum up to one. With this, we end up with a
collection {(sg,m)} that is a particle-based representation of p (a|Y’).

In the above algorithm , steps 1 to 3 represent the essence of the modification
of the Condensation Particle filtering made by the Auxiliary Particle Filtering.
By first propagating all particles at time ¢ — 1 we can evaluate their likelihood
Ag. Particles with high A, that is, particles which end up at areas with high
likelihood when propagated with the transition density, are favored in step 3,
overcoming the first major drawback of classical particle filtering.

Rigid and morphologic observation models In steps 2 and 5 of the PFFL
the likelihood and weight of a sub-particle are determined by applying an ob-
servation model. For the system described in this paper we use two different
models. Both models are robust color-based observation models for template-
based tracking. The first model is suitable for the tracking of rigid motion of the
template around a facial micro feature. The second model however, allows for
minor morphologic transformations of the template. The models are initialized
in the first frame of an image sequence when a set of N windows are centered
around the facial micro-features that the user pointed and that will be tracked
for the rest of the image sequence. Let us denote with o; the template feature
vector, which contains the RGB color information at window 4.

We need to define p (y|a;). Let us denote with ¢; the template feature vector
that contains the RGB color information at the window around «;. We use a
color-based difference between the vectors o; and ¢; that is invariant to global
changes in the intensity as follows:

0; 4
ero09) = (5305~ 50 "

where E {z} is the mean operator on z. It is easy to show that the color
difference vector ¢1 (0;,¢;) is invariant to global changes in the light intensity.
Finally, we define the scalar color distance using a robust function p. Let us
denote with j the pixel index and with ¢1; (0, ¢;) the color difference at pixel j.
The scalar color distance is then defined as:

de (0i,qi) = Ej {p (c15 (0i, 4i))} (®)

where the robust function that has been used in our experiments is the L; norm
(see section 3.1).




The second model allows for non-rigid deformations of the initial template,
as mentioned above. Let us denote this unknown transformation with ¢ : N2 —
N2, a transformation that gives the correspondence between the pixel coordi-
nates of the color template ¢ and the image patch y (a;). The distance metric
d,, for the second model contains two terms: the first term is similar to the dis-
tance measure for the rigid observation model, only now we take the minimum
color distance for all possible deformations ¢. The second term, d; (¢), is a mea-
sure of the shape deformation that is introduced by the transformation ¢. The
distance measure is the minimum over all possible transformations, formally:

dim (y (i) , 0) = min (de (0,y (i, 9)) + Ads (¢)) (9)

where the first term is used to penalize large color-based distances, the second
term is used to penalize large shape deformations and the parameter A controls
the balance between the two terms. For details on the distance term d; (¢) and
the transformation ¢, please read [22]. Finally, the observation likelihood reads:

p(ylag) = e dv(@)) (10)

where d (x,y) is either the distance measure d. defined in (8) or the distance
measure d,, defined in (9) depending on which observation model is applied.

2.2.3 Parametric Representation

After tracking n fiducial facial points in an image sequence containing [ frames,
we obtain a set of coordinates P with dimensionality Ixn. In order to extract
parameters that are invariant to rigid head motions within one image sequence
we first intra-register all frames within one sequence by subtracting point N
from the coordinates of all facial points. Variations in the relative positions of
the facial points between different subjects' are minimized by applying a trans-
formation 7. The transformation in question is obtained by comparing facial
points B, B1 and N with their corresponding points in a pre-defined 'normal’
face. Thus, the registered points P] are obtained as:

P/ =T(P;-N) (11)

From the set of points P = (P;...P,) we extract a set of parameters F' with
dimensionality [ * d. The parameters we extract are given in table 2, based on
the rules for AU activation as described in [15].

3 Pattern Classification

We used several different learning algorithms for the classification of data pat-
terns existing in our input data into the requested output classes (AUs). The

1Except for identical twins without scars, no two faces are the same. Hence, for example
the distances between the mouth corners varies with every subject. We map every subject to
a 'normal’ face to make the comparison between subjects possible.



Table 2: Parametric representation of changes in facial feature points
| Feature Features for facial point features |

Edist (z,y) Euclidian distance between the points = and

Y
EdistIncrease (z,y,)n | The Euclidian distance increase between
points z and y at frame n relative to their
distance at frame 1

xDistFromN (x) The vertical distance between point z at frame
nan point z at frame 1
yDistFromN (z) The horizontal distance between point z at

frame nan point z at frame 1

utilized algorithms vary from very simple (k-Nearest Neighbour) to state-of-
the-art (Support Vector Machines with Probabilistic Active Learning) learning
algorithms. However, a complex classifier like Support Vector Machines (SVMs)
might not be always well suited for the task at hand, depending on the data
representation, as we will show in section 4.

3.1 k-Nearest Neighbour

The employed k-Nearest Neighbour (kNN) algorithm is straightforward: for a
test sample it uses a distance metric to compute which k (labeled) training
samples are “nearest” to the sample tested for. It then casts a majority vote
on the labels of the nearest neighbours to decide the class of the test sample.
Parameters of interest are the distance metric being used and k, the number of
neighbours to consider. Apart from the domain expertise, there is no easy way
to determine what distance metric to use or what value k£ should take.
Some examples of distance metrics are the Minkowski distance:

d 1/m
Lm (a, b) = (Z |Clz' — bilm) (12)

of which the well known Euclidian distance (Ls norm) and Manhattan or city-
block distance (L; norm) are special cases. The Manhattan distance is the
sum of the distances of the projections of the points on a set of predefined
perpendicular axes. The Tanimoto metric, which find most use in taxonomy, is

defined as
ni + ng — 2nq2

DTanz'moto (Sl, 52) = (13)

ni +ng — N2
where n; and ns are the number of elements in sets S; and Ss, respectively, and
n12 is the number of elements that is in both sets. Another distance that will
prove useful in combintation with a MMHI data representation is the Chamfer



distance. It is defined as follows:
1 m
DChamfer (a, b) = Z ming |a,» - bk| + Zmink |bz — ak| (14)
i=1 i=1

where a and b are sets with cardinality [ and m, respectively. When applied
to Multilevel Motion History Images, the entries in the sets a and b indicate
which history levels are active (see section 2.1.3). Although kNN is non-linear
in concept and has achieved good results in a wide range of problems, there are
a number of major drawbacks. The first major drawback is that for each test
sample to classify, the distance of the test sample to each and every sample in
the training set has to be computed after which all these distances have to be
sorted. Besides the problem of a slow classification process, this also means that
for the classifier to work, all traindata needs to be stored.

The second major drawback is that while kNN works very good when the
train data is a good estimation of the underlying probability density function,
it’s generalisation ability is not optimal when we have a limited number of
training examples.

3.2 Sparse Network of Winnows

A Sparse Network of Winnows (SNoW) [23] is an information processing struc-
ture that consists of an input layer of nodes and an output layer of target
nodes. It learns a sparse network of linear functions in which the target con-
cepts (classes) are represented as linear functions over a common feature space.

Nodes in the input layer of the network represent simple relations over the
input and are being used as the input features. Given a set of relations (i.e.
types of features) that may be of interest in a set of input features, feature set is
mapped into a set of features which are active (present) in it; this representation
is presented to the input layer of SNoW and propagated to the target nodes.?
Target nodes are linked via weighted edges to (some of the) input features.
Let Ay = {i1,...,9m} be the set of features that are active in an example and
are linked to the target node ¢ . Then the target node is active if and only if
Yic A, w! > 6;, where w! is the weight on the edge connectiong the ith feature
to the target node ¢, and 6, is the threshold.

The training algorithm is on-line and mistake-driven. Several update rules
can be used within SNoW. The most succesful update rule and the only one
used in our experiments is a variant of Littlestone’s Winnow update rule, a
multiplicative update rule tailored to the situation in which the set of input
features is not known a priori. The Winnow update rule has, in addition to the
threshold 6; at the target ¢, two update parameters: a promotion parameter
a > 1 and a demotion parameter 0 < # < 1. These parameters are used to
update the current representation of the target ¢ (the set of weights wf), but

2Features may take either binary values, just indicating if the features are active, or real
values, reflecting the strength of the activation in question. In our experiments, we used only
binary values.



only when a mistake in the prediction is made. Let A; = {i1,...,im} be the
set of active features that are linked to the target node ¢. If the algorithm
predicts -1 (that is, ;. 4 w! < 6;) and the real label is 1 (false negative), the
active weights in the current example are promoted in a multiplicative fashion:
Vi € Ay, w} ¢ aw}. And if the algorithm predicts 1 (3, 4, w} > 6;) while the
real label is -1 (false positive), the active weights in the current example are
demoted: Vi € A;, w! < Bw!. All other weights are unchanged.

The key feature of the Winnow update rule is that the number of examples
it requires to learn a linear function grows linearly with the number of relevant
features and only logarithmically with the total number of features. This is
what makes SNoW appealing for use in combination with temporal templates:
although the temporal templates have a large dimension, typically only specific
regions (pixels) within the temporal templates are important (and thus active,
in SNoW sense) for certain AUs.

3.3 Expert Systems

Knowledge-based systems or Expert Systems have formed a sub-field of artificial
intelligence for some three decades now. It investigates knowledge models and
reasoning techniques that might assist a human decision maker. Expert systems
have been defined in various ways, but all definitions agree that expert systems
are artificial means used to emulate the decision-making ability of a human
expert.

Expert systems have two main parts, namely, a knowledge base and an
inference engine. The knowledge base contains knowledge about the problem
domain, usually in the form of heuristic rules. The inference engine uses the rules
to infer appropriate conclusions based on relevant portions of the knowledge base
and a set of facts that form the current input to the system.

3.4 Support Vector Machine

Support Vector Machines (SVMs) have proven to be extremely efficient clas-
sifiers, achieving classification rates unparaleled by any other classifier in do-
mains as diverse as marine biology, face detection and speech recognition. They
are sparse, non-linear and generalize very well given only a small training set.
But probably the most important aspect is the well-founded mathematical the-
ory [24] on which the classifier is based. It is inspired by statistical learning
theory that performs structural risk minimization on a nested set structure of
separating hyperplanes. SVMs may be used for regression, binary and multi-
class classification. The essence of SVMs can be summarized in three steps:
maximizing the separating hyperplane margin, mapping the input space to a
(hopefully) linearly separable feature space and applying the ’kernel trick’ to
combine the first two steps in a computationally efficient way.

Maximizing the margin of the separating hyperplane (w + b) results in a
high generalization ability. Generalization bounds can be found in [24, 25, 26].
To wit, it is the problem of finding the hyperplane that maximizes the distance
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Figure 6: (a) A two-dimensional training with positive examples as black dots
and negative examples as white dots. The true decision boundary, 22 + 22 < 1,
is also shown. (b) The same data after mapping into a three dimensional feature
space (23,73, /27125)

between the support vectors (SVs) and w. We refer to the margin of the function
output as the functional margin. The generalisation bounds and optimisation
theories use instead the geometric margin, which is the functional margin of
a normalised weight vector w/ ||w||. Hence, we can equally well optimise the
geometric margin by fixing the functional margin to be equal to 1 and minimising
the norm of the weight vector (resulting in a canonical hyperplane). Suppose
we are given a set of examples (z1,91),-.- (1, 41), € € RN, y; € {—1,+1} we
achieve the maximal margin hyperplane with geometric margin v = 1/ ||w||, as
follows:
minimizeaw,p (w - w)
subjectto  Yiw-x;)+b)>1,i=1...1

Off course, most real-world problems are not linearly separable in input space.
To enrich the hypothesis space of the learning algorithm presented above and to
overcome this problem, in step 2 we map each input sample x to its represen-
tation in feature space ® () in which we can apply our learning algorithm to
find the maximal margin hyperplane. More often than not, this feature space is
of (much) higher dimension than the input space. Perhaps the most illustrative
example is the problem of finding a way to linearly separate black dots within
a circle from white dots outside that circle (see Fig. 6).

The third step is probably the most important step. Before we can apply the
pertinent ’'kernel trick’, we must realize that the margin optimization problem
can be represented in it’s Lagrangian dual representation as follows:

(15)

mazrimizegerm W (@) = Z:’;l a; — Z:’;l o0y:y; (2 - )
subject to S ey =0 (16)
and a;>0,i=1,...,1



The decision function of our classifier is now found as:

m
f(z) =sgn (Z a;y; {x - x;) + b) (17)
i=1
where b is the bias of the hyperplane and (x - x;) is the inner product of test
sample & and the ith trainsample x;. This representation has the remarkable
property that the data only appear inside an inner product. Maximizing the
margin and evaluating the decision function both require the computation of
the dot product (® (x), ® (x;)) in a high-dimensional space. There exist special
functions, or kernels, with the following property:

(@ (x), ®(2i) = K (@, ;) (18)

Substituting these so-called Mercer kernels into inner products of the objective
and the decision functions (16) and (17) can greatly reduce the computation
time, as it eliminates the need to explicitly transform the input space to the
feature space. The patterns which we want to detect using our maximal margin
classifier do not need to coincide with the input x, we might as well apply our
decision function (17) directly on @ (). Substituting (18) for the inner product,
the decision function in feature space directly becomes

f(x) = sgn <i yia;k (T, ;) + b) (19)

i=1

The sparseness of SVMs results from the fact that only a small fraction of the
«; coefficients have nonzero values. The name of the SVM comes from those
vectors ; with nonzero ; which are known as the support vectors. This sparse
set of support vectors fully define the decision function, giving rise to extremely
fast classification and little space needed to store the decision function.

Unfortunately, in many practical situations, a separating hyperplane does
not exist. To allow for possibilities of violating (17), slack variables ¢; > 0 are
introduced. The optimization problem is now defined as:

minimize T(w, () = (w,w) + CZézl Gi
subjectto y; {x;-w)+b)>1-¢,i=1,...,1 (20)
and G>0,i=1,...,1
It can be shown that minimizing the first term in (20) amounts to minimizing
a bound on the VC-dimension and minimizing the second term corresponds to
minimizing the classification error [24]. This minimization can be posed as a
constrained quadratic programming problem, with solutions in the form of (17).

3.4.1 Probabilistic Active Learning

Because of the large amount of samples used in our experiments (over 15.000),
validation with a leave-one-out scheme or even a leave-one-session-out scheme,



where one session contains samples belonging to one video, becomes an in-
tractable problem. To overcome this problem, we implemented a Probabilistic
Active Learning (PAL) algorithm [27]. PAL iteratively improves the SV set,
using only a small subset of the training samples at every iteration to build
the support vector classifier. The algorithm estimates the likelihood that a new
example belongs to the actual support vector set and selects a set of p new
points according to this likelihood, which are then used along with the current
set of SVs to obtain the new SV set. The likelihood of an example being a SV
is estimated using a combination of two factors: the margin of the particular
example with respect to the current hyperplane and the degree of confidence
that the current set of SVs spans the actual hyperplane that separates the com-
plete training set in feature space best3. This confidence factor ¢, which varies
with each iteration, can be also seen as a measure for how close the current hy-
perplane is to the actual hyperplane. Therefore ¢ can be used as an indication
of how to choose samples to be used in the next iteration: close to the current
hyperplane (high ¢) or far away from the hyperplane (low ¢). So instead of being
randomly chosen from the set of training examples, the new set of samples for
each iteration is generated according to a probability P¢(,, f(»)) where £ (z, f ())
denotes the event that example z is an SV. If (w,b) is the current separating
hyperplane, we have:

c i w-z)+b) <1
Peasien = { 1-c T (<other1>uise) - (21)
Here ¢ is the above mentioned confidence factor. This factor is estimated as
follows. Let the current set of SVs be denoted by S = {s1,52,...,51}. Also,
consider an integer k (say, k = /). For every s; € S, compute the set of k
nearest points in the train set . Among the k nearest neighbors, let k;" and
k; number of points have labels +1 respectively -1. The confidence factor c is
then defined as:

l
2 . -
c= 1221 min (k}, k) (22)

This results in an adaptive algorithm that starts by finding the general location
of the separating hyperplane and then proceeds with fine tuning in order to
delimit the exact location of w.

4 Experimental Evaluation
In this section we will present various experiments that were undertaken to

evaluate the performance of AAU detectors based upon of the two data repre-
sentations described in section 2 in combination with the classifiers described

3Note that we use the confidence in having found the actual hyperplane, as opposed to
Mitra et al. [27], who find the confidence that the current set of SVs is the actual set of SVs.
The issue here is that the set of SVs that spans the actual hyperplane does not need to be
unique.



in section 3. We will organize the remainder of this section as follows: sec-
tion 4.1 describes the two data sets that we have used for our experiments.
Section 4.2 describes the experimental setup for the experimental evaluation of
AU detection using temporal templates, while section 4.3 describes the experi-
ments conducted based upon tracked fiducial facial points. Some combinations
of data representations and classifiers seemed a priori unfruitful and have not
been evaluated.

4.1 Face Databases

To develop and evaluate face analysis applications, large collections of training
and test data are needed. While motion records are necessary for studying tem-
poral dynamics of facial expressions, static images are important for obtaining
information on the configuration of facial expressions which is essential, in turn,
for inferring the related meaning (e.g., in terms of emotions). Therefore both
static face images and face videos are needed.

Also, while the researchers of machine analysis of facial affect are interested
in facial expressions of emotions, the researchers of machine analysis of facial
muscle actions are interested in facial expressions produced by activating a single
facial muscle (AU) or by activating a combination of AUs. Therefore both kinds
of training and test material are needed.

In a frontal-view face image, facial actions such as showing the tongue or
pushing the jaw forwards represent out-of-plane non-rigid movements which are
difficult to detect. Such AUs are clearly observable in a profile view of the
face. On the other hand, changes in the appearance of the eyes and eyebrows
are clearly observable from a frontal facial view. Therefore both frontal and
profile facial views are necessary for the research on machine analysis of facial
expressions.

In spite of repeated references to the need for a comprehensive, readily acces-
sible reference set of face images that could provide a basis for benchmarks for
all different efforts in the research on machine analysis of facial expressions, no
database of images exists that is shared by all diverse facial-expression-research
communities. In general, only isolated pieces of such a facial database exist.
An example is the unpublished database of Ekman-Hager Facial Action Ex-
emplars. It has been used by several research groups in the States to train
and test their methods for facial action detection from face image sequences.
The facial databases made publicly available, but still not used by all diverse
facial-expression-research communities, are the Cohn-Kanade AU-coded Face
Expression Image Database [28], the PIE face database [29], the AR database
[30], and the JAFFE database [31]. From these, the most comprehensive and the
most commonly used database in the research on automated facial expression
analysis is the Cohn-Kanade face database.

None of these existing face databases contains images of faces in profile view,
none contains images of all possible single-AU activations, and none contains
both static face images and face videos. Also, the metadata (labels) associated
with each database object does not usually identify the temporal segments (on-



Figure 7: Three samples of recordings (sessions) contained in the MMI-Face
DB. The three columns show the first, middle and last frames of each session

set, apex, offset) of AUs and emotion facial displays shown in the face video in
question. Finally, none of these databases is either easily accessible or easily
searchable. Once a permision for the usage is issued, large, unstructured files of
material are sent.

MMI-face-Database In an attempt to address the issues on face databases
presented above, we started the development of the MMI-face-DB. It presently
consists of over 4000 videos and 600 static images depicting facial displays of 31
adults being 18 to 35 years old; 50% female, 81% being Caucasian, 14% Asian
and 5% African. All facial displays are posed and the recordings are made
under constant lighting conditions. All but seven facial expression videos were
recorded in profile and frontal view simultaneously (using a mirror). Two FACS
experts coded the database. When in doubt, decisions were made by consensus.

The database contains a large amount of videos where the activation of
individual AUs has been recorded. In the cases where this was not possible,
expressions produced by the activation of the least possible number of AUs
were recorded. For example, AU16 (lower lip depressed) depresses the lower
lip and automatically parts the lips causing AU25 (lips parted) to be activated
as well. Figure 7 shows the first, middle and last frames of three recordings
(sessions) of the MMI-Face-DB.



Cohn Kanade Database Another database that we used in our experiments
is the Cohn-Kanade face database. This database contains over 2000 videos of
the facial displays produced by 210 adults being 18 to 50 years old, 69% fe-
male, 81% caucasian, 13% African and 6% from other ethnic groups. All facial
displays are posed and the recordings are made under constant lighting condi-
tions. Only real expressions were recorded, which means that many AUs never
occur alone. Many recordings contain the date/time stamp recorded over part
of the face. This occurrence is unwanted, for it causes (M)MHI activation and
it foils the point tracking algorithm. Hence, as explained below, when tested on
Cohn-Kanade database samples, our algorithms achieved unsatisfactory results
in some instances.

4.2 Temporal Templates experiments

For detection of AUs from MHI- and MMHI-represented face image sequences,
we compared two classification schemes: (i) a two-stage classifier combining
a kNN-based and a rule-based classifier, and (ii) a SNoW classifier. The first
method is straightforward, while the second method seemed very appropriate to
the problem at hand. SNoW is a sparse multi-class classifier specifically tailored
to large-scale classification problems with a very large number of features, which
is exactly what we needed.

4.2.1 Combined kNN /rule-based classifier

We have developed a two-stage classifier, consisting of a kNN classifier for the
initial classification, followed by a second-stage rule-based classifier, which tries
to correct a number of common mistakes made in the first stage. The kNN
variable k£ and the distance metric were experimentally determined. Best results
for MHI input data were achieved using the simple Euclidian, or Ls, norm
(12). In the case of MMHI-based data representation we have used the Chamfer
distance (14).

Though it gives a good indication of the AUs shown in a given sample, the
kNN algorithm confuses commonly AUs that have partially the same (M)MHI.
To address this drawback, we created a set of rules based on the knowledge of a
human FACS coder. We defined facial regions in which the presence of motion
characterizes certain AU activation (see Fig. 8). For example, the presence of
motion in region R» is characteristic for the activation of AU2. We calculate
this activity act (R;) in facial region R; as follows:

HXY,

N 2w yer; [(—255L7”)-‘ MHI — data
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act (R;) = (23)

where H is the MHI operator defined in (3), n; is the number of history levels
in each (M)MHI, |A;| the cardinality of active history levels of the j-th pixel in
a MMHI and N the number of pixels in the facial region R;. The facial regions
are positioned relative to the same facial points that we used for the registration
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Figure 8: Facial regions for meassurement of temporal templates activity. The
numbers of the regions correspond to Action Units

of image sequences as described in section 2.1.1. Using the activation of these
regions we built a set of rules. With these rules it is possible to correctly
reclassify samples that the kNN algorithm misclassified at first. For example,
the kNN classifier often confuses AU4 and AU1+AU4. Both produce activity
in the same part of the (M)MHI (in regions R; and Ry as illustrated in Fig. 8),
but AU4 causes the eyebrows to move inward and downward, while AU1+AU4
first causes an inward and downward movement of the eyebrows followed by
an upward movement of the brows. This results in a high activation between
the brows and a relatively low activation above the inner corners of the brows.
Hence, the rule used to resolve the confusion in question is defined as follows.
If the kNN classifier encodes AU4 and it is true that

act (Ry)
(act (R2) + act (R4))

where th; are thresholds that are automatically defined during the training
phase, then AU1+AU4 will be the final classification of the pertinent input
sample.

Experimental evaluation showed that the optimal kNN parameter k& should
be k = 3 and the (M)MHI constructor threshold thy = 0.19 (equation (1)).

Table 4 shows the results of tests performed on a leave-one-out basis on the
MMI-face-DB and table shows the results for the same test performed on the
Cohn-Kanade database. Unfortunately, as mentioned in section 4.1, the Cohn-
Kanade database has fewer AUs occurring alone, resulting in fewer AUs that
can be recognized. The recognition rates for this database are somewhat higher.
This is probably due to a larger number of samples per AU and fewer target
classes providing less confusion possibilities.

Results for MMHI are, overall, lower than they are for MHI. This is because
of the definition of MMHI. The distance measure used makes it difficult to find

> thy [\ act (Ry) > thy (24)



Table 3: SNoW detection results. Column 2 lists the number of positive samples
in the dataset

Action Unit | nr | Recognition rate | Recognition rate
positive samples negative samples
1 34 | 0.85 0.85
2 22 | 0.64 0.97
4 37 | 0.76 0.85
6 18 | 0.50 0.89
12 21 | 0.67 0.94
17 36 | 0.33 0.85
25 49 | 0.94 0.23
26 4 | 0.25 0.94
27 7 | 0.29 1.00
total: 228 | 0.58 0.84

the desired nearest neighbor of a sample when multiple levels are activated on
the same position in a MMHI. Furthermore, as we do not have any examples
displaying possible confusion caused by motion self-occlusion, we were not able
to show the increased resolution of MMHI with respect to MHI in occasions
where confusions caused by motion self-occlusions do occur.

4.2.2 SNoW classifier

For each AU to detect a binary SNoW net is trained using an equal number
of positive and negative samples. Each trained SNoW net is evaluated on the
whole dataset on a leave-one-out basis. The MHI data was constructed from the
Cohn-Kanade database; samples containing individual AUs as well as samples
containing more than one AU were allowed in the training and test sets. The
number of examples the SNoW algorithm requires to learn a linear function
grows linearly with the number of relevant features. Yet, although we down-
scaled our images, the results suggest that there still are too many relevant
features present in our sample MHIs for the number of samples in the dataset;
AUs with a small number of positive samples do not have good recognition rates
for the detection of positively labeled samples. Table 3 shows the results for the
SNoW classifier.

4.3 Facial points experiments

For detection of AUs based upon tracked facial points we compared the results of
classification achieved with PAL-trained SVMs to those achieved using kNN. For
the evaluation of both detectors we tracked 20 facial micro features (described in
section 2.2.3) in 167 image sequences from the MMI-Face-DB displaying different
facial expressions. We evaluated two different approaches. In the first approach
we used expert knowledge to define 2-5 different parameters for detection of



Table 4: Recognition rates for the MMI-face-DB using a two-stage kNN-rulebase
on temporal template data. The second column shows the number of samples
of the specified action unit contained in the database

| Action Units | nr | MHI | MMHI |
Recall | Precision | Recall | Precision

142 10 0.9 0.75 0.9 0.75
2 6 0.5 1.0 0.5 0.6
1+4 6 0.5 0.5 0.5 0.5
4 12 0.67 0.57 0.75 0.47
6 10 0.7 0.88 0.7 0.88

9 11 0.82 1 0.45 1
8+25 10 0.6 0.6 0.4 0.57
10425 10 0.9 0.9 0.8 0.89
11425 10 0.7 0.88 0.7 0.88
12425 10 1.0 0.5 0.8 0.47
14 11 0.27 0.43 0.18 0.4
15 8 0.37 0.25 0.75 0.18
16425 10 0.6 0.43 0.5 0.24
17 10 0.6 0.67 0.7 0.54
18 10 0.7 0.64 0.6 0.55
20 10 0.6 0.67 0.6 0.86

22+25 10 0.6 0.67 0.4 1
25 9 0.33 0.23 0.33 0.38
25+26 11 0.36 0.27 0.46 0.31

27 10 0.8 1 0.7 1
26-+30L 9 0.33 0.75 0.33 0.75
26+30R 9 0.67 0.67 0.67 0.75
26+36T 12 0.50 0.86 0.42 0.71
26+36B 10 0.60 0.75 0.3 0.75
26+36L 9 0.56 0.45 0.44 0.44
26+36R 10 0.40 04 0.6 0.75
Total: 253 0.61 0.59 0.56 0.54

| Recognitionrate: | | 0.61 | 0.56 |

each of 15 different AUs. Every classifier is thus trained with a different set
of features and the activation of AUs is highly independent of each other. In
contrast, the second approach tries to exploit the correlation between various
AUs by using all (48) features. These are the same features that were used in
the first approach, only now used all together. This approach makes it possible
to detect AUs indirectly that have high correlation with other AUs. Using this
approach we can detect AUs 6 and 9 in addition to the 15 AUs we were allready
able to detect.



Table 5: Recognition rates for the Cohn-Kanade database using a two-stage
kNN-rulebase on temporal template data. The second column shows the number
of samples of the specified action unit contained in the database

| Action Units | nr | MHI | MMHI |
Recall | Precision | Recall | Precision
142 21 0.52 0.85 0.45 0.75
1+4 21 0.61 0.52 0.67 0.39
4 21 0.38 0.44 0.29 0.46
6 61 1 0.88 0.89 0.87
12425 59 0.63 0.79 0.31 0.82
12 27 0.78 0.45 0.54 0.32
15 4 0.25 0.09 0 0
17 26 0.54 0.74 0.46 0.43
20+25 18 0.11 0.67 0.11 0.29
25 42 0.64 0.73 0.88 0.5
27 42 0.93 0.89 0.78 0.92
Total: 344 0.68 0.68 0.58 0.59
| Recognition rate: | 0.69 | 0.58 |

4.3.1 SVM validation

Training data was generated from 169 videos (from now on called ’sessions’)
from the MMI-face-DB (15 different subjects). The training data consisted not
only of the 17 AUs to be detected, but of all possible AUs. This way we could
prove that our system will work in real-life situations where people can dis-
play any facial expression, allthough we still are not able to recognize them all.
Validation was performed using a leave-one-session-out cross-validation strat-
egy. This seems fair, as each session consists of an image sequence containing
one facial expression. Therefore, every session has a highly spatio-temporally
correlated pattern. A leave-one-out strategy where we would leave one frame
out instead would lead to enormous loss of generalization, because the frame is
embedded in the time dynamic pattern of all the other frames within that video
and classifcation of that frame would become almost trivial.

The SVM classifier detects AUs per frame. In this work we will not consider
timing aspects of AU activation but instead focus on the presence of AUs within
an entire video, consistent with existing literature. Therefore we add a decision
layer that adaptively computes a threshold, favoring the recall over the precision
of the classification of AUs in facial video. First, we apply the cross-validation
scheme on our data set. This results in a set of AU activation predictions for
every frame in every facial video. Suppose the SVM detemined that a test
sample x has n frames where a certain AU is active. Let’s say that N, is a
vector containing the number of active frames as predicted by the SVM for all
videos where the AU under investigation is present and IV ,, the vector containing
the number of active frames as for all videos where that AU is not present. Let



Table 6: Validation results for AU detection using SVM on selected features.
Columns two and three list the number of positive/negative image sequences
per AU.

| AU | Truth [ Prediction | Cl. Rate | Recall | Precision ]

1 [ 13/154 | 13/154 1.00 1.00 1.00
2 | 10/157 | 10/157 1.00 1.00 1.00
4 [ 24/143| 12/155 0.87 0.50 0.50
10 | 15/152 | 0/167 0.91 0.00 0.00
12 | 11/152 | 8/155 0.98 0.73 0.89
13 | 10/157 | 10/153 0.98 1.00 0.71
15 | 10/157 | 0/157 0.94 0 0

16 | 8/66 2/66 0.92 0.25 1.00
18 | 13/154 | 9/148 0.94 0.69 0.60
20 | 10/157 | 6/140 0.87 0.6 0.26
22 | 8/159 | 2/152 0.92 0.25 0.22
25 | 75/92 | 71/76 0.88 0.95 0.82
26 | 17/150 | 12/149 0.96 0.71 0.92
27 | 10/157 | 10/157 1.00 1.00 1.00
30 | 5/108 4779 0.73 0.8 0.12

N, <, be the vector of elements of IN,, that are smaller than min (IN,). The
threshold that is used to decide wether the test sample & contains the AU under
investigation is now found as:

(min (N,) —maz (N p<p))
2

The results presented for the various validation studies on the facial point data
are organized in tables as follows: the first three columns of the tables represent
the AU, the number of positive/negative samples for that AU as recorded by
the FACS coder (the ground truth for our validation studies) and the number
of correctly predicted positive/negative samples. Columns four to six list the
classification rate, recall and precision for the AU. The classification rate is the
number of correctly classified samples divided by the total number of samples.
The recall is defined as the number of positive samples from the ground truth
that are correctly classified divided by the total number of positive samples
found in the ground truth. Precision is defined as the correctly classified positive
samples divided by the sum of correctly classified positive samples and the
number of false positives. So, recall tells us how often the classifier retrieves
a positive example, while the precision is a measure of how reliable the results
are.

Table 6 shows the results for the cross-validation on the MMI-Face-DB using
the selected features for each AU.

Table 7 shows the results for the cross-validation on the MMI-Face-DB using
all features for a selection of AUs. As we can see, using all features enables

th = max (N p<p) + (25)



Table 7: Validation results for AU detection using SVM on all features. Columns
two and three list the number of positive/negative image sequences per AU.
| AU | Truth [ Prediction | CL. Rate | Recall | Precision |

1 [ 13/154 ] 11/122 0.80 | 0.8462 | 0.2558
6 | 16/151 | 15/129 0.86 0.94 0.41
9 | 10/157 | 10/156 0.99 1.00 0.01
10 | 15/152 | 14/142 0.93 0.93 0.58
26 | 17/150 | 16/151 0.83 0.94 0.37
27 | 10/157 | 7/134 0.84 0.70 0.23

Table 8: kNN validation of the MMI-Face-DB for ><DEFANGED.2909 three

selected AUs

| AU | Truth | Prediction | CL. Rate | Recall | Precision |

1 | 13/154 | 13/153 0.99 1 0.93
25 | 75/92 73/13 0.52 0.97 0.48
16 | 10/150 | 12/98 0.66 0.71 0.19

us to detect AUs we could not detect using the selected features. However,
performance drops for some other AUs. Most notably, the classifier performs
pretty bad for AU1 and AU27, in shrill contrast with the performance of the
SVM-PAL classifier using selected features.

4.3.2 kNN validation

To compare our SVM-PAL classification scheme with the cumbersome kNN
classifier, we applied leave-one-session-out cross validation on the MMI-Face-
DB data for three AUs. We used all Facial Fiducial Point features for this
validation. The first AU, AU, is very easy to detect using the fiducial facial
point data representation, the second AU, AU25, is a good representation of
an AU of ’average recognition difficulty’ and the last AU we performed the
comparison study on is AU16, which was extremely difficult to detect using our
SVM-PAL classifier. As we can see from table 8, kNN shows similar results. The
precision of kNN is far lower than the precision found for SVM-PAL. Therefore,
the results from the SVM-PAL are more reliable.

5 Conclusions and Future Research

The purpose of this work was a twofold. The first goal was to determine the
effectiveness of the Temporal Template and Fiducial Facial Points data repre-
sentations for the purposes of AU recognition. The second goal was to evaluate
on classification schemes which would be effective for the AU recognition tasks,
using the aforementioned data representations.



We have shown that the Temporal Template data representation is suitable
for AU recognition tasks, altough the configuration in which we used Tempo-
ral Templates in this work is open for improvement. The nature of Temporal
Templates makes it very useful for a temporal analysis of AU activation, a topic
we have not addressed in this work. Onset/offset detection would be an area
we wish to investigate further using Temporal Templates. Data representation
for temporal analysis of facial expression dynamics, we believe Multilevel Mo-
tion History Images (MMHISs) are more appropriate than the original Motion
History Images (MHIs). MMHIs retain all motion information of the temporal
segment for which they are defined, in contrast with MHIs that can lose motion
information by motion self occlusion. Unfortunately, we failed to prove this in
this work. We believe this is due to two facts. First, in our test data there
were no cases where motion self-occlusion could cause confusion (e.g., in hand
gesture recognition, waving the hand would be confused with moving the hand
from left to right only due to motion self occlusion). The second problem when
using MMHIs is choosing an appropriate classification mechanism. The kNN
classifier using a Chamfer distance metric is not a good classifier for this data
representation.

The results in section 4.3 show clearly that the Fiducial Facial Points data
representation is very well suited for the task of AU detection and thus for the
task of facial expression analysis. If we select for every AU the proper feature
parameters, results are both precise and reliable. The fact that it is possible to
detect AUs on a per frame basis makes this data representation also suitable
for temporal analysis dynamics of facial expressions. It may seem strange at
first that the SVM-PAL results using all features are sometimes lower than the
results for the same classification scheme using selected features. The reason
for this is that when we look at all the features, the activation of AUs becomes
correlated. In order to train a system using all features that will generalize well
in real world applications, we would need a very complete database of facial
expressions that covers all possible combinations of AUs. This is not feasible in
practice. We therefore suggest that some care has to be taken when using all
features and that where possible the selected features should be used.

We have shown that Support Vector Machines are a good classifier in com-
bination with Fiducial Facial Point data for the task of AU detection. It clearly
outperforms kNN in terms of generalisation capability, classification time and
required memory. Sparse Networks of Winnows (SNoWs) are not usefull in
the current setting. They either need more training data, or we need to apply
feature selection before training ><DEFANGED.2910 the SNoW.

In the near future we plan to do more experiments. We plan to do a large-
scale comparison between the MMI-Face-DB and the Cohn-Kanade-DB for the
SVM-PAL classifier based upon the facial point data. Also, we want to test the
SVM-PAL classifier using all feature parameters for more AUs.

As allready mentioned above, both data representations have potential to
prove useful for temporal analysis of facial expression dynamics. The classifica-
tion and interpretation of facial expressions in terms of onset, apex and offset
of AUs is one of the research topics we will be addressing in the future. For this



temporal analysis, Hidden Markov Models is one of the learning algorithms we
want to investigate further. Temporal analyses on larger time scales, that is,
interpretations of facial behavior in terms of attitudes like bordom and atten-
tiveness as well as in terms of mood is one of our future aims as well.

The ultimate goal is providing means for better man-machine interaction.
Facial expression analysis is an important variable in this process. Yet, we
believe that we can improve the understanding between humans and machines
even more by including novel modalities for non-verbal communication. The
fusion of video and audio data will therefore receive a lot of research efforts in
the near future.
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